EMSE 6035:

Marketing Analytics for Design Decisions

Design of Experiments

John Paul Helveston, Ph.D.
Assistant Professor
Engineering Management \& Systems Engineering
The George Washington University

Design of experiment affects amount of available information

Design: Full Factorial

a	b	c	Effect
-	-	-	I
+	-	-	A
-	+	-	B
-	-	$+$	C
+	+	-	AB
+	-	$+$	AC
-	+	+	BC
+	+	$+$	ABC

Balanced:
For each attribute, all levels appear an equal number of times.
Orthogonal: For each pair of attributes, all pairs of levels appear together an equal number of times.

Main Average change in the dependent
Effects: variable associated with a change in an attribute level.

Example:

$\operatorname{ME}(\mathrm{a})=\left(\frac{\mathrm{A}+\mathrm{AB}+\mathrm{AC}+\mathrm{ABC}}{4}\right)-\left(\frac{\mathrm{I}+\mathrm{B}+\mathrm{C}+\mathrm{BC}}{4}\right)$

Main Average change in the dependent
Effects: variable associated with a change in an attribute level.

Example:
$\operatorname{ME}(\mathrm{a})=\left(\frac{\mathrm{A}+\mathrm{AB}+\mathrm{AC}+\mathrm{ABC}}{4}\right)-\left(\frac{\mathrm{I}+\mathrm{B}+\mathrm{C}+\mathrm{BC}}{4}\right)$

Interaction Difference in the main effect of one
Effects: attribute based on the value of another attribute.

Example:

$$
\begin{aligned}
\operatorname{INT}(a b) & =\frac{1}{2}\left[\left(\frac{A B+A B C}{2}\right)-\left(\frac{B+B C}{2}\right)\right] \\
& -\frac{1}{2}\left[\left(\frac{A+A C}{2}\right)-\left(\frac{I+C}{2}\right)\right]
\end{aligned}
$$

Fractional Factorial Designs

a	b	c	Effect
-	-	-	I
-	-	+	C
+	+	-	AB
+	+	+	ABC

Balanced? Yes
Orthogonal? No

Main effects of a and b are confounded

$$
\operatorname{ME}(\mathrm{a})=\operatorname{ME}(\mathrm{b})=\left(\frac{\mathrm{AB}+\mathrm{ABC}}{2}\right)-\left(\frac{\mathrm{I}+\mathrm{C}}{2}\right)
$$

To find other confounded effects, multiply by ($a=b$):

$$
\begin{array}{c|c}
\mathrm{c}(\mathrm{a}=\mathrm{b}) & \mathrm{ac}=\mathrm{bc} \\
\mathrm{~b}(\mathrm{a}=\mathrm{b}) & \mathrm{ab}=\mathrm{I} \\
\mathrm{ac}(\mathrm{a}=\mathrm{b}) & \mathrm{c}=\mathrm{abc}
\end{array}
$$

Fractional Factorial Designs

a	b	c	Effect	Balanced?	Yes
+	-	-	A	Orthogonal?	Yes
-	+	-	B		
-	-	+	C		
+	+	+	ABC		

None of the main effects are confounded, but each main effect is confounded with a two-way interaction:

a	bc
b	ac
c	ab
I	abc

Designing your experiment / conjoint survey

Practice Question 1

Consider the following experiment design:

a	b	c	Effect
+	-	-	A
-	+	-	B
+	-	+	AC
-	+	+	BC

a) Is the design balanced? Is it orthogonal?
b) Write out the equation to compute the main effect for a, b, and c.
c) Are any main effects confounded? If so, what are they confounded with?

