

m EMSE 6035: Marketing Analytics for Design Decisions

Sohn Paul Helveston

Ö October 09, 2024

1. Utility models

2. Exploring choice data

3. Linear & discrete parameters

BREAK

4. Outside good

1. Utility models

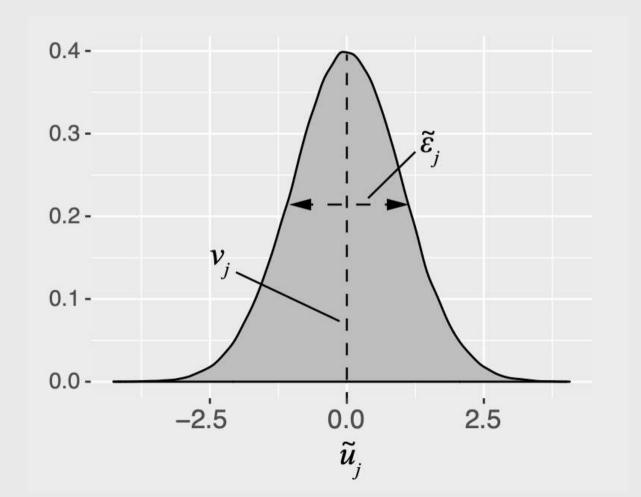
2. Exploring choice data

3. Linear & discrete parameters

BREAK

4. Outside good

Random utility model


The utility for alternative j is

$$ilde{u}_j = v_j + ilde{arepsilon}_j$$

 v_j = Things we observe (non-random variables)

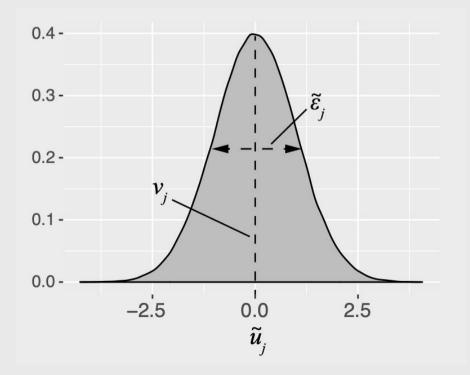
 $\tilde{\varepsilon}_j$ = Things we *don't* observe (random variable)

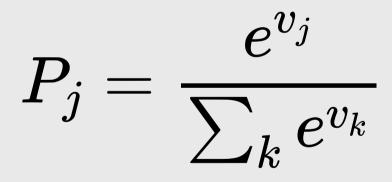
$$ilde{u}_j = v_j + ilde{arepsilon}_j$$

5/28

Practice Question 1

a) A random variable, \tilde{x} , has the PDF, $f_{\tilde{x}}(x)$. Write the equation to compute its total probability (hint: think area under the curve!). What is the answer to the equation?


b) A random variable, \tilde{x} , has a uniform distribution between the values 0 and 1. Draw the probability density function (PDF) and Cumulative Density Function (CDF) of \tilde{x} .


c) The value of a random variable, \tilde{x} , is determined by rolling one fair, 6-sided dice. Draw the PDF and CDF of \tilde{x} .

Logit model: Assume that $\tilde{\varepsilon}_j \sim \text{Gumbel Distribution}$

$$ilde{u}_j = v_j + ilde{arepsilon}_j$$

Probability of choosing alternative *j*:

Practice Question 2

a) A consumer is making a choice between two bars of chocolate:

- Milk chocolate (m)
- Dark chocolate (d)

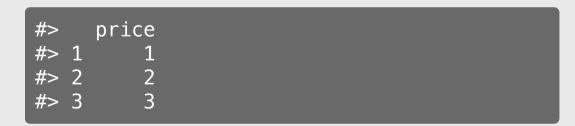
Assume that we know the observed utility of each bar to be $v_m = 3$ and $v_d = 4$. Using a logit model, compute the probabilities of choosing each bar: P_m and P_d .

b) A third bar of chocolate is now added to the choice set. It is the exact same as the milk chocolate bar, but it has a slightly different wrapper (which has no effect on the consumer's utility). Now, $v_{m1} = v_{m2} = 3$, and $v_d = 4$. Based on the probabilities from question a), what would we expect the probabilities of choosing each bar to be? What probabilities does the logit model produce?

"Observed utility" (v_i) is a weighted sum of attribute values

$$v_j = eta_1 x_j^\mathrm{A} + eta_2 x_j^\mathrm{B} + \dots$$

Each x_j is an observable attribute (*price*, etc.)


We know
$$x_j^{
m A}, x_j^{
m B}, \ldots$$
, we want to estimate eta_1, eta_2, \ldots

Notation Convention

Continuous:
$$x_j$$
 Discrete: δ_j

$$u_j = eta_1 x_j^{ ext{price}} + \dots$$

$$u_j = eta_1 \delta_j^{ ext{ford}} + eta_2 \delta_j^{ ext{gm}} \dots$$

#> 1 Ford 0 1 0 #> 2 GM 0 0 1 #> 3 BMW 1 0 0	#>		brand	brand_BMW	brand_Ford	brand_GM	
	#>	1	Ford	0	1	0	
	#>	2	GM	0	0	1	
	#>	3	BMW	1	0	0	

Practice Question 3

AttributeBar 1Bar 2Bar 3Price\$1.20\$1.50\$3.00% Cacao10%60%80%

a) Write out a model for the *observed* utility of each chocolate bar in the above set.

b) If the coefficient for the *price* attribute was -0.1 and the coefficient for % *Cacao* attribute was 0.1, what is the difference in the observed utility between bars 3 and 1?

c) With the addition of the *brand* attribute, repeat part a.

Attribute	Bar 1	Bar 2	Bar 3
Price	\$1.20	\$1.50	\$3.00
% Cacao	10%	60%	80%
Brand	Hershey	Lindt	Ghirardelli

Your Turn

Let's say our utility function is:

$$v_j = eta_1 x_j^{ ext{price}} + eta_2 x_j^{ ext{cacao}} + eta_3 \delta_j^{ ext{hershey}} + eta_4 \delta_j^{ ext{lindt}}$$

And we estimate the following coefficients:

Parameter	Coefficient
eta_1	-0.1
eta_2	0.1
eta_3	-2.0
eta_4	-0.1

a) What are the expected probabilities of choosing each of these bars using a logit model?

Attribute	Bar 1	Bar 2	Bar 3
Price	\$1.20	\$1.50	\$3.00
% Cacao	10%	60%	80%
Brand	Hershey	Lindt	Ghirardelli

b) What price would Bar 2 have to be to get a 50% market share?

1. Utility models

2. Exploring choice data

3. Linear & discrete parameters

BREAK

4. Outside good

Download the logitr-cars repo from GitHub

Exploring choice data

Open logitr-cars.Rproj
 Open code/2.1-explore-data.R

1. Utility models

2. Exploring choice data

3. Linear & discrete parameters

BREAK

4. Outside good

Dummy-coded variables

Dummy coding: 1 = "Yes", 0 = "No"

Data frame with one variable: <i>price</i>	Add dummy columns for each price "level"
<pre>data <- data.frame(price = c(10, 20, 30))</pre>	
data	<pre>library(fastDummies)</pre>
	<pre>dummy_cols(data, "price")</pre>
<pre>#> price #> 1 10 #> 2 20 #> 3 30</pre>	<pre>#> price price_10 price_20 price_30 #> 1 10 1 0 0 #> 2 20 0 1 0</pre>
	#> 3 30 0 0 1

Model price as continuous

$$v_j=eta_1 x^{ ext{price}}$$

model <- logitr(
 data = data,
 choice = "choice",
 obsID = "obsID",
 pars = "price"
)</pre>

Model price as discrete

$$v_j = eta_1 \delta^{\mathrm{price}=20} + eta_2 \delta^{\mathrm{price}=30}$$

Reference level: *price=10*

Coef.	Interpretation	Coef.	Interpretation	
β1	how utility changes with increasing <i>price</i>	β1	utility for <i>price=20</i> relative to <i>price=10</i>	
		β2	utility for <i>price=30</i> relative to <i>price=10</i>	
				-18

Estimating utility models

Open logitr-cars.Rproj
 Open code/3.1-model-mnl.R

mnl_dummy

All dummy-code variables

```
pars = c(
 "price_20", "price_25",
 "fuelEconomy_25", "fuelEconomy_30",
 "accelTime_7", "accelTime_8",
 "powertrain Electric")
```

Reference Levels:

- Price: 15
- Fuel Economy: 20
- Accel. Time: 6
- Powertrain: "Gasoline"

mnl linear

All continuous (linear), except for powertrain Electric

```
pars = c(
  'price', 'fuelEconomy', 'accelTime',
  'powertrain Electric')
```

Reference Levels:

Powertrain: "Gasoline"

Your Turn

1) Run the code chunk to read in the data.csv file in the "data" folder, which contains choice observations from chocolate bars with the following attributes:

Attribute	Description
price	Price in \$
<pre>percent_cacao</pre>	% Cacao (how "dark" the chocolate is)
crispy_rice	0 or 1 for if the bar contains crispy rice
brand	"Hershey", "Lindt", or "Ghirardelli"

2) Write code to estimate the following utility model(HINT: you may need to make some dummy-coded variables!):

$$u_j = eta_1 x_j^{ ext{price}} + eta_2 x_j^{\% ext{cacao}} + eta_3 \delta_j^{ ext{crispy}} + eta_4 \delta_j^{ ext{hershey}} + eta_5 \delta_j^{ ext{lindt}} + arepsilon_j$$

3) Write code to plot the change in utility for the *price* attribute.

Break

1. Utility models

2. Exploring choice data

3. Linear & discrete parameters

BREAK

4. Outside good

Estimating utility models with an Outside Good

1. Open logitr-cars. Rproj

2. Open code/4.1-model-nochoice.R

1. Utility models

2. Exploring choice data

3. Linear & discrete parameters

BREAK

4. Outside good

Simulating choice data

Random choices

Choices according to assumed model

```
data <- cbc_choices(
    design = design,
    obsID = "obsID"
)</pre>
```

$$v_j = -0.7 x_j^{
m price} + 0.1 x_j^{
m fuelEconomy} - 0.2 x_j^{
m accelTime} - 4 \delta_j^{
m electric}$$

```
data <- cbc_choices(
    design = design,
    obsID = "obsID",
    priors = list(
        price = -0.7,
        fuelEconomy = 0.1,
        accelTime = -0.2,
        powertrain_Electric = -4.0
    )
)
```

Estimate a choice model

$$v_j = eta_1 x_j^{ ext{price}} + eta_2 x_j^{ ext{fuelEconomy}} + eta_3 x_j^{ ext{accelTime}} + eta_4 \delta_j^{ ext{electric}}$$

```
model <- logitr(
    data = data,
    outcome = "choice",
    obsID = "obsID",
    pars = c(
        "price", "fuelEconomy", "accelTime", "powertrain_Electric"
    )
)</pre>
```

Your Turn

As a team:

- 1. Go back to your code from last week where you created your choice questions.
- 2. Write out a utility model for your project.
- 3. Write code to simulate data according to your utility model pick some fake parameter values.
- 4. Write code to estimate a model using your simulated data.