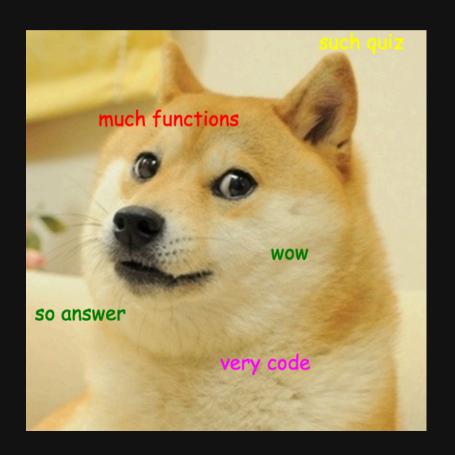


Week 10: DOE & Power Analysis

m EMSE 6035: Marketing Analytics for Design Decisions

2 John Paul Helveston

October 29, 2025


Quiz 4

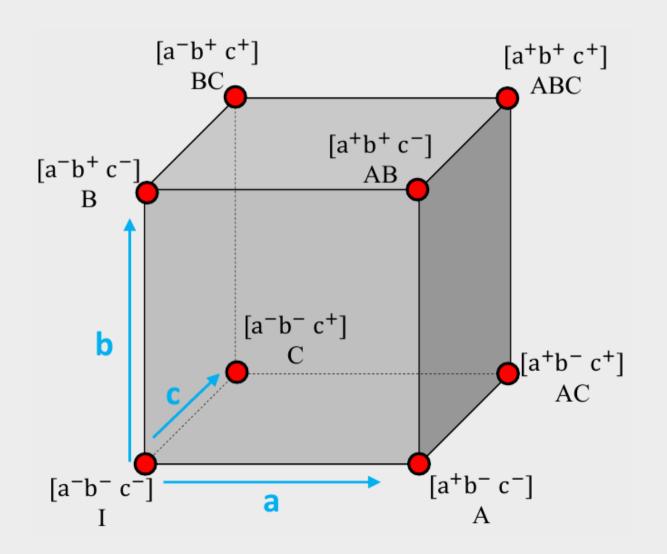
12:00

Write your name on the quiz!

Rules:

- Work alone; no outside help of any kind is allowed.
- No calculators, no notes, no books, no computers, no phones.

Week 10: DOE & Power Analysis

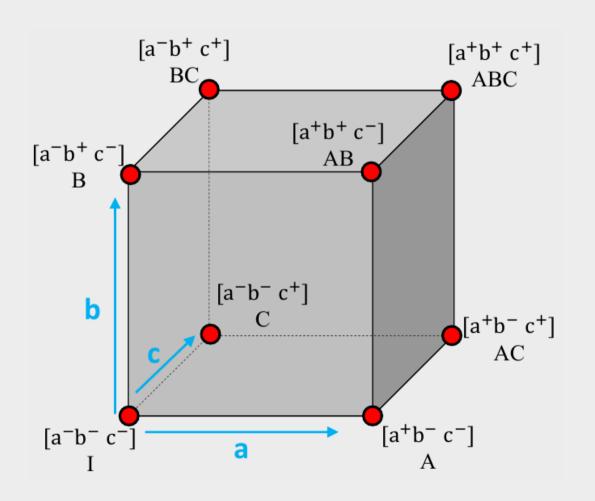

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

Week 10: DOE & Power Analysis

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

Main & Interaction Effects

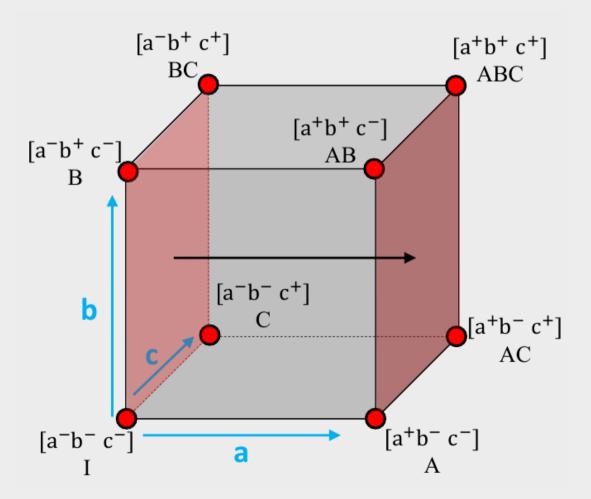
Full design space for 3 effects: A, B, C


Full design space for 3 effects: A, B, C

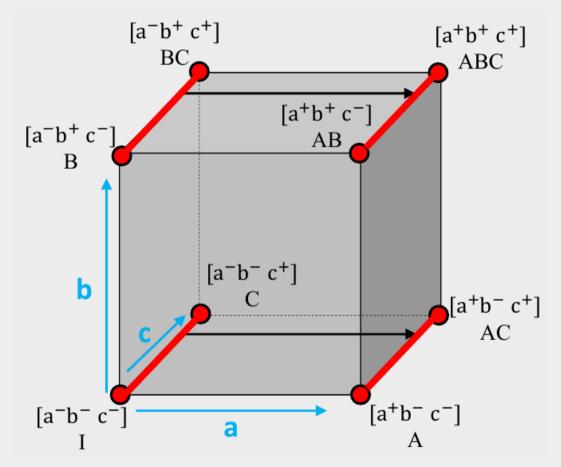
Example: Cars

A: Electric? (Yes+ or No-)

B: Warranty? (Yes+ or No-)


C: Ford? (Yes+ or No-)

Main Effects


$$ME(a) = \ \left(rac{A+AB+AC+ABC}{4}
ight) - \ \left(rac{I+B+C+BC}{4}
ight)$$

(A: Electric? Yes+ or No-)

Interaction Effects

$$INT(ab) = rac{1}{2} \left[\left(rac{AB + ABC}{2}
ight) - \left(rac{B + BC}{2}
ight)
ight] - rac{1}{2} \left[\left(rac{A + AC}{2}
ight) - \left(rac{I + C}{2}
ight)
ight]$$

Example: Wine Pairings

meat wine

fish white

fish red

steak white

steak red

Main Effects

1. meat: Fish or Steak?

2. wine: **Red** or **White**?

Example: Wine Pairings

meat wine

fish white

fish red

steak white

steak red

Main Effects

1. meat: Fish or Steak?

2. wine: **Red** or **White**?

Interaction Effects

1. meat*wine: Red or White wine with Steak?

2. meat*wine: **Red** or **White** wine with **Fish**?

Open interactions.qmd

Fractional vs Full Factorial Designs

Full Factorial Design

Example: Cars

A: Electric? (Yes+ or No-)

B: Warranty? (Yes+ or No-)

C: Ford? (Yes+ or No-)

```
library(cbcTools)

profiles <- cbc_profiles(
    electric = c(1, 0),
    warranty = c(1, 0),
    ford = c(1, 0)
)</pre>
```

```
profiles
```

Full Factorial Design

Balanced?

All levels appear an equal number of times.

Orthogonal?

All pairs of levels appear together an equal number of times.

```
library(cbcTools)

profiles <- cbc_profiles(
    electric = c(1, 0),
    warranty = c(1, 0),
    ford = c(1, 0)
)</pre>
```

```
profiles
```

Fractional Factorial Design

Balanced?

All levels appear an equal number of times.

Orthogonal?

All pairs of levels appear together an equal number of times.

```
profiles[c(1, 3, 5, 6),]
```

Comparing Full and Fractional Factorial Designs Open balance-orthogonality.qmd

Practice Question 1

Consider the following experiment design

а	b	С	Effect
+	-	-	Α
-	+	-	В
+	-	+	AC
-	+	+	ВС

- a) Is the design balanced? Is is orthogonal?
- b) Write out the equation to compute the main effect for a, b, and c.
- c) Are any main effects confounded? If so, what are they confounded with?

Week 10: DOE & Power Analysis

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

A simple conjoint experiment about cars

Attribute	Levels	
Brand	GM, BMW, Ferrari	
Price	\$20k, \$40k, \$100k	

Design: 9 choice sets, 3 alternatives each

```
Attribute counts:

brand:
GM BMW Ferrari
10 11 6

price:

20k 40k 100k
9 9 9
```

```
Pairwise attribute counts:

brand & price:

20k 40k 100k

GM 3 0 7

BMW 4 5 2

Ferrari 2 4 0
```

A simple conjoint experiment about cars

Attribute	Levels	
Brand	GM, BMW, Ferrari	
Price	\$20k, \$40k, \$100k	

Design: 90 choice sets, 3 alternatives each

```
Attribute counts:

brand:
GM BMW Ferrari
92 80 98

price:
20k 40k 100k
91 84 95
```

```
Pairwise attribute counts:

brand & price:

20k 40k 100k
GM 31 31 30
BMW 25 25 30
Ferrari 35 28 35
```

Bayesian D-efficient designs

Maximize information on "Main Effects" according to priors

Attribute	Levels	Prior
Brand	GM, BMW, Ferrari	0, 1, 2
Price	\$20k, \$40k, \$100k	0, -1, -4

$$v_j = 1\delta^{
m BMW} + 2\delta^{
m Ferrari} - 1\delta^{
m 40k} - 4\delta^{
m 100k}$$

Bayesian D-efficient designs

Maximize information on "Main Effects" according to priors

Attribute	Levels	Prior
Brand	GM, BMW, Ferrari	0, 1, 2
Price	\$20k, \$40k, \$100k	0, -1, -4

```
Attribute counts:

brand:
GM BMW Ferrari
93 90 86

price:
20k 40k 100k
97 93 78
```

```
Pairwise attribute counts:

brand & price:

20k 40k 100k

GM 52 41 0

BMW 30 30 30
Ferrari 15 22 49
```

Negative of the hessian evaluated at a set of parameters is called the "Information Matrix"

$$oldsymbol{I}(oldsymbol{eta}) = -
abla_{oldsymbol{eta}}^2 \ln(\mathcal{L})$$

"D-optimal" designs attempt to minimize the "D-error" of a design

$$D = |oldsymbol{I}(oldsymbol{eta})|^{-1/p}$$

where p is the number of coefficients in the model

Finding Efficient Designs Open design-efficiency.qmd

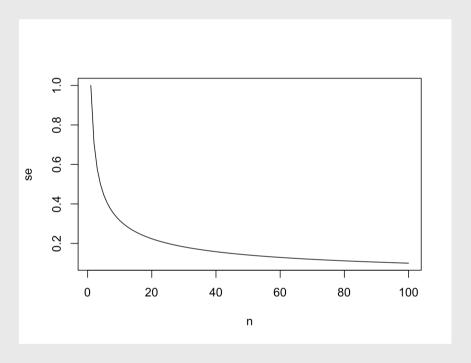
Your Turn

- 1. Individually, create a Bayesian D-efficient fractional factorial survey design. Inspect the attribute balance and overlap.
- 2. Compare your results with your teammates.

Week 10: DOE & Power Analysis

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

How many respondents do I need?


How many respondents do I need to get X level of precision on β ?

Standard errors are inversely related to \sqrt{N}

```
n <- seq(100)
se <- 1/sqrt(n)
plot(n, se, type = "l")</pre>
```

Standard errors also decrease with:

- Fewer attributes
- Fewer levels in each categorical attribute
- More questions per respondent

Using {cbcTools}, we can run simulations to determine the necessary sample size for a specific model

Open power-analysis.qmd

Your Turn

Individually:

- 1. Using the survey design you created in the last practice, conduct a power analysis to determine the necessary sample size to achieve a 0.05 significance level on your parameter estimates.
- 2. Compare your results with your teammates.