

Week 12: Heterogeneity

m EMSE 6035: Marketing Analytics for Design Decisions

2 John Paul Helveston

☐ November 12, 2025

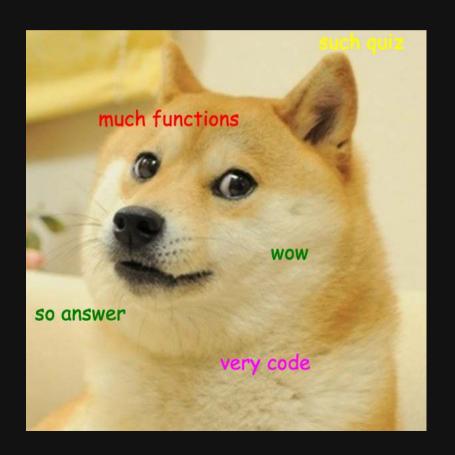
Quiz 5 - last one!

12:00

Write your name on the quiz!

Rules:

- Work alone; no outside help of any kind is allowed.
- No calculators, no notes, no books, no computers, no phones.



Houskeeping items

- **Final presentations** will be on 12/10 during normal class hours. You can prerecord a video presentation if you want, or you can do it live.
- Final Surveys are due 11/16 (this Sunday!). They need to be fully working
- Final Analysis (due 12/07) will also be an html page report.
- I am planning on posting all final analyses (without grades) to the course site as a showcase for future students please DM me if you would NOT like your report posted. (examples from last year)

Week 12: Heterogeneity

- 1. Mixed logit (unobserved heterogeneity)
- 2. Sub-group modeling (observed heterogeneity)

Week 12: Heterogeneity

- 1. Mixed logit (unobserved heterogeneity)
- 2. Sub-group modeling (observed heterogeneity)

Two ways of modeling heterogeneity

"Observed Heterogeneity"

Interaction Models

Group 1		Group 2	
Estimate	Std. Err.	Estimate	Std. Err.
\hat{eta}_1	σ_1	\hat{eta}_1	σ_1
\hat{eta}_2	σ_2	\hat{eta}_2	σ_2
:	÷	:	:
$\hat{\beta}_m$	σ_m	$\hat{\beta}_m$	σ_m

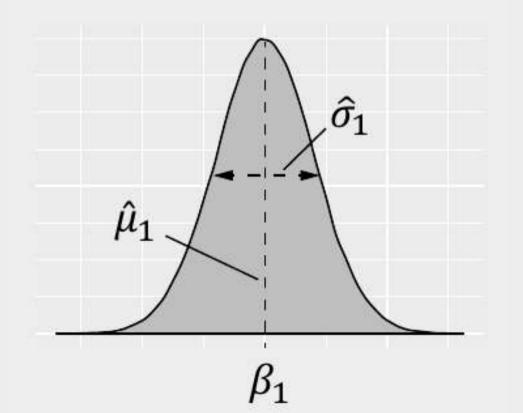
"Unobserved Heterogeneity"

Estimate a "mixed" logit (a.k.a. hierarchical) model

Estimate
$\hat{\beta}_1 \sim N(\hat{\mu}_1, \hat{\sigma}_1)$
$\hat{\beta}_2 \sim N(\hat{\mu}_2, \hat{\sigma}_2)$
:
$\hat{\beta}_m \sim N(\hat{\mu}_m, \hat{\sigma}_m)$

Mixed logit

Preference parameters follow a distribution across sample population



$$egin{aligned} ilde{u}_j &= eta_1 x_j + arepsilon_j \ eta_1 &\sim \mathrm{N}(\mu_1, \sigma_1) \end{aligned}$$

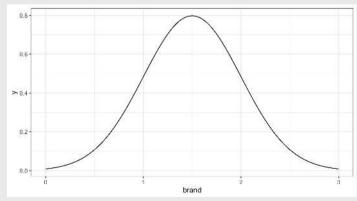
Parameter	Estimate	Standard Error
μ_1	0.1	0.01
σ_1	0.1	0.01

Which distribution should I use?

Normal distribution

When preferences can be positive or negative

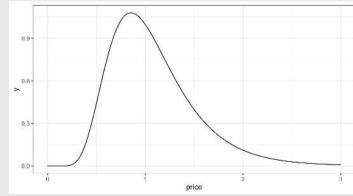
e.g. brand = "n"



Log-normal distribution

When preferences should be strictly positive

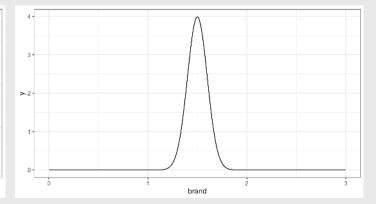
e.g. -1*price = "ln"



Fixed parameter

When preferences appear to be homogeneous

(e.g. σ is very small)



Mixed logits are not equivalent in Preference vs. WTP space

Preference space

Mixed logits are not equivalent in Preference vs. WTP space

Preference space

$$ilde{u}_j = lpha p_j + eta x_j + arepsilon_j$$

$$lpha \sim \ln ext{N}(\mu_1, \sigma_1)$$

$$eta \sim \mathrm{N}(\mu_2, \sigma_2)$$

$$\omega = rac{eta}{-lpha} = rac{ ext{N}(\mu_2, \sigma_2)}{-\ln ext{N}(\mu_1, \sigma_1)}$$

WTP space

$$ilde{u}_j = \lambda(\omega_1 x_j - p_j) + arepsilon_j$$

$$\omega_1 \sim \mathrm{N}(\mu_1, \sigma_1)$$

Practice Question 3

a) Use the logitr package to estimate the following homogeneous model:

$$ilde{u}_j = eta_1 x_j^{ ext{price}} + eta_2 \delta_j^{ ext{feat}} + eta_3 \delta_j^{ ext{dannon}} + eta_4 \delta_j^{ ext{hiland}} + eta_5 \delta_j^{ ext{weight}} + arepsilon_j$$

where the three δ coefficients are dummy variables for Dannon, Hiland, and Weight Watchers brands (Yoplait is the reference level).

- b) Use the logitr package to estimate the same model but with the following mixing distributions:
- ullet $eta_1 \sim \mathrm{N}(\mu_1, \sigma_1)$
- ullet $eta_2 \sim \mathrm{N}(\mu_2, \sigma_2)$

Estimating mixed logit models with logitr

- 1. Open logitr-cars
- 2. Open code/8.1-model-mxl.R

Your Turn

As a team, re-estimate the main model you used in your pilot analysis report, but now using a mixed logit model.

Carefully consider which distributions to use (i.e., normal or log-normal) for different variables.

Week 12: Heterogeneity

- 1. Mixed logit (unobserved heterogeneity)
- 2. Sub-group modeling (observed heterogeneity)

Two ways of modeling heterogeneity

"Observed Heterogeneity"

"Unobserved Heterogeneity"

10+000	-+:	1100	ماہ
Intera	ction	iviou	eis

Group 1		Group 2	
Estimate	Std. Err.	Estimate	Std. Err.
\hat{eta}_1	σ_1	$\hat{\beta}_1$	σ_1
\hat{eta}_2	σ_2	\hat{eta}_2	σ_2
:	:	:	:
\hat{eta}_m	σ_m	\hat{eta}_m	σ_m

Estimate a "mixed" logit (a.k.a. hierarchical) model

Estimate
$\hat{\beta}_1 \sim N(\hat{\mu}_1, \hat{\sigma}_1)$
$\hat{\beta}_2 \sim N(\hat{\mu}_2, \hat{\sigma}_2)$
:
$\hat{\beta}_m \sim N(\hat{\mu}_m, \hat{\sigma}_m)$

Use interactions to model preferences for multiple groups

Homogenous model:

$$ilde{u}_j = eta_1 x_j + arepsilon_j$$

Two groups: A & B

$$egin{align} ilde{u}_j &= eta_1 x_j + eta_2 x_j \delta^{\mathrm{B}} + arepsilon_j \ &= (eta_1 + eta_2 \delta^{\mathrm{B}}) x_j + arepsilon_j \ \end{aligned}$$

Par.	Meaning
eta_1	Effect of x_j for group A
eta_2	$ extit{ iny Difference}$ in effect of x_j between
otag	groups

What's the difference?

Separate models 🗵

$$ilde{u}_{j}^{ ext{A}}=eta_{1}^{ ext{A}}x_{j}+arepsilon_{j}^{ ext{A}}$$

$$ilde{u}_{j}^{\mathrm{B}}=eta_{1}^{\mathrm{B}}x_{j}+arepsilon_{j}^{\mathrm{B}}$$

Single model ✓

$$ilde{u}_j = eta_1 x_j + eta_2 x_j \delta^{\mathrm{B}} + arepsilon_j$$

Accounting for scale differences

Separate models (*)

$$egin{align} ilde{u}_j^{ ext{A}} &= lpha^{ ext{A}} p_j + eta_1^{ ext{A}} x_j + arepsilon_j^{ ext{A}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + arepsilon_j^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + eta_2^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + eta_2^{ ext{B}} \ & \ ilde{u}_j^{ ext{B}} &= lpha^{ ext{B}} p_j + eta_1^{ ext{B}} x_j + eta_2^{ ext{B$$

Imagine you got the following results

•
$$\hat{\alpha}^{A}$$
 = 100

•
$$\hat{\beta}^{A}$$
 = 200
• $\hat{\alpha}^{B}$ = 1

•
$$\hat{lpha}^{
m B}$$
 = 1

•
$$\hat{\beta}^{\mathrm{B}} = 2$$

Single model 🗸

$$egin{aligned} ilde{u}_j &= lpha_1 p_j + lpha_2 p_j \delta^{\mathrm{B}} + eta_1 x_j + eta_2 x_j \delta^{\mathrm{B}} + arepsilon_j \ &= (lpha_1 + lpha_2 \delta^{\mathrm{B}}) p_j + (eta_1 + eta_2 \delta^{\mathrm{B}}) x_j + arepsilon_j \end{aligned}$$

Accounting for scale differences

Preference Space (*)

Imagine you got the following results

•
$$\hat{\alpha}^{A}$$
 = 100

•
$$\hat{\beta}^{A} = 200$$
• $\hat{\alpha}^{B} = 1$

•
$$\hat{lpha}^{
m B}$$
 = 1

•
$$\hat{\beta}^{\mathrm{B}} = 2$$

WTP Space <

$$ilde{u}_j^{ ext{A}} = \lambda^{ ext{A}}(\omega_1^{ ext{A}} x_j - p) + arepsilon_j^{ ext{A}}$$

$$ilde{u}_{j}^{\mathrm{B}} = \lambda^{\mathrm{B}}(\omega_{1}^{\mathrm{B}}x_{j} - p) + arepsilon_{j}^{\mathrm{B}}$$

$$\omega = \frac{\beta}{-\alpha}$$

$$\hat{\omega}^{
m A} = 200/(-100) = -2$$
 $\hat{\omega}^{
m B} = 2/(-1) = -2$

$$m{\bullet} \; \hat{\omega}^{
m B} = 2/(-1) = -2$$

Practice Question 1

Suppose we estimate the following utility model describing preferences for cars:

$$ilde{u}_j = eta_1 x_j^{ ext{price}} + eta_2 x_j^{ ext{mpg}} + eta_3 x_j^{ ext{elec}} + arepsilon_j ag{elec}$$

- a) Using interactions, write out a model that accounts for differences in the effects of $x_j^{
 m price}$, $x_j^{
 m mpg}$, and $x_j^{
 m elec}$ between two groups: A and B.
- b) Write out the effects of $x_j^{
 m price}$, $x_j^{
 m mpg}$, and $x_j^{
 m elec}$ for each group.

Practice Question 2

Suppose we estimate the following utility model describing preferences for chocolate bars between two groups: A & B

$$ilde{u}_j = eta_1 x_j^{ ext{price}} + eta_2 x_j^{ ext{caco}} + eta_3 x_j^{ ext{price}} \delta_j^{ ext{B}} + eta_4 x_j^{ ext{cacao}} \delta_j^{ ext{B}} + arepsilon_j$$

The estimated model produces the following coefficients and hessian:

$$\beta$$
 = [-0.7, 0.1, 0.2, 0.8]

$$H = egin{bmatrix} -6000 & 50 & 60 & 70 \ 50 & -700 & 50 & 100 \ 60 & 50 & -300 & 20 \ 70 & 100 & 20 & -6000 \end{bmatrix}$$

- a) Use the mvrnorm() function from the MASS library to generate 10,000 draws of the model coefficients.
- b) Use the draws to compute the mean WTP and 95% confidence intervals of the effects of $x_j^{\rm price}$ and $x_j^{\rm cacao}$ for each group (A & B).

Estimating mixed logit models with logitr

- 1. Open logitr-cars
- 2. Open code/8.2-model-mnl-groups.R

Your Turn

Do this individually, and compare with your teammates:

- Examine the demographic and other variables in your pilot data and specify a model that estimates differences between different groups.
- Write code to estimate that model (or multiple models, e.g. WTP space models).
- Compute and compare WTP across the different groups.