Consider the following experiment design
a | b | c | Effect |
---|---|---|---|
+ | - | - | A |
- | + | - | B |
+ | - | + | AC |
- | + | + | BC |
Check:
doe <- tribble(
~a, ~b, ~c,
1, 0, 0,
0, 1, 0,
1, 0, 1,
0, 1, 1
)
# Check balance
doe %>% count(a)
#> # A tibble: 2 × 2
#> a n
#> <dbl> <int>
#> 1 0 2
#> 2 1 2
doe %>% count(b)
#> # A tibble: 2 × 2
#> b n
#> <dbl> <int>
#> 1 0 2
#> 2 1 2
doe %>% count(c)
#> # A tibble: 2 × 2
#> c n
#> <dbl> <int>
#> 1 0 2
#> 2 1 2
# Check orthogonal
pairs <- doe %>%
mutate(
ab = ifelse(a == b, 1, 0),
bc = ifelse(b == c, 1, 0),
ac = ifelse(a == c, 1, 0),
)
pairs %>% count(ab)
#> # A tibble: 1 × 2
#> ab n
#> <dbl> <int>
#> 1 0 4
pairs %>% count(bc)
#> # A tibble: 2 × 2
#> bc n
#> <dbl> <int>
#> 1 0 2
#> 2 1 2
pairs %>% count(ac)
#> # A tibble: 2 × 2
#> ac n
#> <dbl> <int>
#> 1 0 2
#> 2 1 2
The design is NOT orthogonal because A is always equal to -B.
\[ ME(a) = \frac{A + AC}{2} - \frac{B + BC}{2} \]
\[ ME(b) = \frac{B + BC}{2} - \frac{A + AC}{2} \]
\[ ME(c) = \frac{AC + BC}{2} - \frac{A + B}{2} \]
In this design, A and B are confounded (A = -B)
To find other confounded effects, multiply the remaining effects by (a = -b):