

Week 12: Heterogeneity

III EMSE 6035: Marketing Analytics for Design Decisions

9 John Paul Helveston
: : $:$ November 17, 2021

Quiz 5 (last one!)

Make sure to download the zip file on the first page!

10:00

Houskeeping items

- Final presentations will be on $12 / 15$, we will (hopefully) have a guest panel to ask questions.
- Final reports (due $12 / 13$) will also be an html page report.
- I am planning on posting all reports (without grades) to the course site as a showcase for future students - please DM me if you would NOT like your report posted. (example from EMSE 4572)

Week 12: Heterogeneity

1. Mixed logit (unobserved heterogeneity)

BREAK

2. Sub-group modeling (observed heterogeneity)

Week 12: Heterogeneity

1. Mixed logit (unobserved heterogeneity)

BREAK
2. Sub-group modeling (observed heterogeneity)

Two ways of modeling heterogeneity

"Observed Heterogeneity"

Interaction Models			
Group 1		Group 2	
Estimate	Std. Err.	Estimate	Std. Err.
$\hat{\beta}_{1}$	σ_{1}	$\hat{\beta}_{1}$	σ_{1}
$\hat{\beta}_{2}$	σ_{2}	$\hat{\beta}_{2}$	σ_{2}
!	!	:	!
$\hat{\beta}_{m}$	σ_{m}	$\hat{\beta}_{m}$	σ_{m}

"Unobserved Heterogeneity"

Estimate a "mixed" logit (a.k.a. hierarchical) model

$$
\begin{gathered}
\text { Estimate } \\
\hline \hat{\beta}_{1} \sim \mathrm{~N}\left(\hat{\mu}_{1}, \hat{\sigma}_{1}\right) \\
\hat{\beta}_{2} \sim \mathrm{~N}\left(\hat{\mu}_{2}, \hat{\sigma}_{2}\right) \\
\vdots \\
\hat{\beta}_{m} \sim \mathrm{~N}\left(\hat{\mu}_{m}, \hat{\sigma}_{m}\right)
\end{gathered}
$$

Mixed logit

Preference parameters follow a distribution across sample population

Which distribution should I use?

Normal distribution

When preferences can be positive or negative
e.g. brand = "n"

Log-normal distribution

When preferences should be strictly positive
e.g.price = "ln"

Fixed parameter
When preferences appear to be homogeneous
(e.g. σ is very small)

Mixed logits are not equivalent in Preference vs. WTP space

Preference space

$$
\begin{gathered}
\tilde{u}_{j}=\alpha p_{j}+\beta x_{j}+\varepsilon_{j} \\
\alpha \sim \ln \mathrm{~N}\left(\mu_{1}, \sigma_{1}\right) \\
\beta \sim \mathrm{N}\left(\mu_{2}, \sigma_{2}\right)
\end{gathered}
$$

Mixed logits are not equivalent in Preference vs. WTP space

Preference space

$$
\begin{gathered}
\tilde{u}_{j}=\alpha p_{j}+\beta x_{j}+\varepsilon_{j} \\
\alpha \sim \ln \mathrm{~N}\left(\mu_{1}, \sigma_{1}\right) \\
\beta \sim \mathrm{N}\left(\mu_{2}, \sigma_{2}\right) \\
\omega=\frac{\beta}{-\alpha}=\frac{\mathrm{N}\left(\mu_{2}, \sigma_{2}\right)}{-\ln \mathrm{N}\left(\mu_{1}, \sigma_{1}\right)}
\end{gathered}
$$

WTP space

$$
\begin{gathered}
\tilde{u}_{j}=\lambda\left(\omega_{1} x_{j}-p_{j}\right)+\varepsilon_{j} \\
\omega_{1} \sim \mathrm{~N}\left(\mu_{1}, \sigma_{1}\right)
\end{gathered}
$$

Practice Question 3

a) Use the logitr package to estimate the following homogeneous model:

$$
\tilde{u}_{j}=\beta_{1} x_{j}^{\text {price }}+\beta_{2} \delta_{j}^{\text {feat }}+\beta_{3} \delta_{j}^{\text {dannon }}+\beta_{4} \delta_{j}^{\text {hiland }}+\beta_{5} \delta_{j}^{\text {weight }}+\varepsilon_{j}
$$

where the three δ coefficients are dummy variables for Dannon, Hiland, and Weight Watchers brands (Yoplait is the reference level).
b) Use the logitr package to estimate the same model but with the following mixing distributions:

- $\beta_{1} \sim \mathrm{~N}\left(\mu_{1}, \sigma_{1}\right)$
- $\beta_{2} \sim \mathrm{~N}\left(\mu_{2}, \sigma_{2}\right)$

Estimating mixed logit models with logitr

1. Open logitr-cars
2. Open code/8.1-model-mxl.R

Your Turn

As a team, re-estimate the main model you used in your pilot analysis report, but now using a mixed logit model.

Carefully consider which distributions to use (i.e., normal or log-normal) for different variables.

Break

$05: 00$

Week 12: Heterogeneity

1. Mixed logit (unobserved heterogeneity)

BREAK
2. Sub-group modeling (observed heterogeneity)

Two ways of modeling heterogeneity

"Observed Heterogeneity"

Interaction Models			
Group 1		Group 2	
Estimate	Std. Err.	Estimate	Std. Err.
$\hat{\beta}_{1}$	σ_{1}	$\hat{\beta}_{1}$	σ_{1}
$\hat{\beta}_{2}$	σ_{2}	$\hat{\beta}_{2}$	σ_{2}
!	!	:	!
$\hat{\beta}_{m}$	σ_{m}	$\hat{\beta}_{m}$	σ_{m}

"Unobserved Heterogeneity"

Estimate a "mixed" logit (a.k.a. hierarchical) model

$$
\begin{gathered}
\text { Estimate } \\
\hline \hat{\beta}_{1} \sim \mathrm{~N}\left(\hat{\mu}_{1}, \hat{\sigma}_{1}\right) \\
\hat{\beta}_{2} \sim \mathrm{~N}\left(\hat{\mu}_{2}, \hat{\sigma}_{2}\right) \\
\vdots \\
\hat{\beta}_{m} \sim \mathrm{~N}\left(\hat{\mu}_{m}, \hat{\sigma}_{m}\right)
\end{gathered}
$$

Use interactions to model preferences for multiple groups

Homogenous model:

$$
\tilde{u}_{j}=\beta_{1} x_{j}+\varepsilon_{j}
$$

Par.	Meaning
β_{1}	Effect of x_{j} for group A
β_{2}	Difference in effect of x_{j} between groups

Two groups: A \& B

$$
\begin{aligned}
\tilde{u}_{j} & =\beta_{1} x_{j}+\beta_{2} x_{j} \delta^{\mathrm{B}}+\varepsilon_{j} \\
& =\left(\beta_{1}+\beta_{2} \delta^{\mathrm{B}}\right) x_{j}+\varepsilon_{j}
\end{aligned}
$$

What's the difference?

Separate models *

$$
\begin{array}{ll}
\tilde{u}_{j}^{\mathrm{A}}=\beta_{1}^{\mathrm{A}} x_{j}+\varepsilon_{j}^{\mathrm{A}} & \tilde{u}_{j}=\beta_{1} x_{j}+\beta_{2} x_{j} \delta^{\mathrm{B}}+\varepsilon_{j} \\
\tilde{u}_{j}^{\mathrm{B}}=\beta_{1}^{\mathrm{B}} x_{j}+\varepsilon_{j}^{\mathrm{B}} &
\end{array}
$$

Single model

Accounting for scale differences

Separate models $\boldsymbol{*}$

$$
\begin{aligned}
\tilde{u}_{j}^{\mathrm{A}}=\alpha^{\mathrm{A}} p_{j}+\beta_{1}^{\mathrm{A}} x_{j}+\varepsilon_{j}^{\mathrm{A}} & \tilde{u}_{j}=\alpha_{1} p_{j}+\alpha_{2} p_{j} \delta^{\mathrm{B}}+\beta_{1} x_{j}+\beta_{2} x_{j} \delta^{\mathrm{B}}+\varepsilon_{j} \\
\tilde{u}_{j}^{\mathrm{B}}=\alpha^{\mathrm{B}} p_{j}+\beta_{1}^{\mathrm{B}} x_{j}+\varepsilon_{j}^{\mathrm{B}} & =\left(\alpha_{1}+\alpha_{2} \delta^{\mathrm{B}}\right) p_{j}+\left(\beta_{1}+\beta_{2} \delta^{\mathrm{B}}\right) x_{j}+\varepsilon_{j}
\end{aligned}
$$

Imagine you got the following results

- $\hat{\alpha}^{\mathrm{A}}=100$
- $\hat{\beta}^{\mathrm{A}}=200$
- $\hat{\alpha}^{B}=1$
- $\hat{\beta}^{B}=2$

Accounting for scale differences

Preference Space ©

WTP Space

$$
\begin{aligned}
& \tilde{u}_{j}^{\mathrm{A}}=\alpha^{\mathrm{A}} p_{j}+\beta_{1}^{\mathrm{A}} x_{j}+\varepsilon_{j}^{\mathrm{A}} \\
& \tilde{u}_{j}^{\mathrm{B}}=\alpha^{\mathrm{B}} p_{j}+\beta_{1}^{\mathrm{B}} x_{j}+\varepsilon_{j}^{\mathrm{B}}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{u}_{j}^{\mathrm{A}}=\lambda^{\mathrm{A}}\left(\omega_{1}^{\mathrm{A}} x_{j}-p\right)+\varepsilon_{j}^{\mathrm{A}} \\
& \tilde{u}_{j}^{\mathrm{B}}=\lambda^{\mathrm{B}}\left(\omega_{1}^{\mathrm{B}} x_{j}-p\right)+\varepsilon_{j}^{\mathrm{B}}
\end{aligned}
$$

Imagine you got the following results

- $\hat{\alpha}^{\mathrm{A}}=100$
- $\hat{\beta}^{\mathrm{A}}=200$
- $\hat{\alpha}^{B}=1$
- $\hat{\omega}^{\mathrm{A}}=200 /(-100)=-2$
- $\hat{\beta}^{\mathrm{B}}=2$
- $\hat{\omega}^{\mathrm{B}}=2 /(-1)=-2$

Practice Question 1

Suppose we estimate the following utility model describing preferences for cars:

$$
\tilde{u}_{j}=\beta_{1} x_{j}^{\mathrm{price}}+\beta_{2} x_{j}^{\mathrm{mpg}}+\beta_{3} x_{j}^{\mathrm{elec}}+\varepsilon_{j}
$$

a) Using interactions, write out a model that accounts for differences in the effects of $x_{j}^{\text {price }}, x_{j}^{\text {mpg }}$, and $x_{j}^{\text {elec }}$ between two groups: A and B .
b) Write out the effects of $x_{j}^{\text {price }}, x_{j}^{\mathrm{mpg}}$, and $x_{j}^{\text {elec }}$ for each group.

Practice Question 2

Suppose we estimate the following utility model describing preferences for chocolate bars between two groups: A \& B

$$
\tilde{u}_{j}=\beta_{1} x_{j}^{\text {price }}+\beta_{2} x_{j}^{\text {caco }}+\beta_{3} x_{j}^{\text {price }} \delta_{j}^{\mathrm{B}}+\beta_{4} x_{j}^{\mathrm{cacao}} \delta_{j}^{\mathrm{B}}+\varepsilon_{j}
$$

The estimated model produces the following coefficients and hessian:

$$
\beta=[-0.7,0.1,0.2,0.8]
$$

a) Use the mvrnorm () function from the MASS library to generate 10,000 draws of the model coefficients.

$$
H=\left[\begin{array}{cccc}
-6000 & 50 & 60 & 70 \\
50 & -700 & 50 & 100 \\
60 & 50 & -300 & 20 \\
70 & 100 & 20 & -6000
\end{array}\right]
$$

b) Use the draws to compute the mean WTP and 95\% confidence intervals of the effects of $x_{j}^{\text {price }}$ and $x_{j}^{\text {cacao }}$ for each group (A \& B).

Estimating mixed logit models with logitr

1. Open logitr-cars
2. Open code/8.2-model-mnl-groups.R

Your Turn

Do this individually, and compare with your teammates:

- Examine the demographic and other variables in your pilot data and specify a model that estimates differences between different groups.
- Write code to estimate that model (or multiple models, e.g. WTP space models).
- Compute and compare WTP across the different groups.

