

Week 14: Exam Review & Final Analysis Overview

☎ EMSE 6035: Marketing Analytics for Design Decisions

Lohn Paul Helveston

December 01, 2021

Week 14: Exam Review & Final Analysis Overview

1. Final Report & Presentation

2. Sensitivity Analysis

BREAK

3. Exam Review

Week 14: Exam Review & Final Analysis Overview

- 1. Final Report & Presentation
- 2. Sensitivity Analysis

BREAK

3. Exam Review

Analysis

1. Clean data

2. Modeling

- Simple logit
- Mixed logit
- One sub-group model

3. Analysis

- WTP for key features
- Market simulation
- Sensitivity analysis

Report

- 1. Introduction
- 2. Survey Design
- 3. Data Analysis
- 4. Results (plots / text)
- 5. Recommendations

Final Presentation

- In class, 12/15
- 10 minutes (strict)
- External Panel of Reviewers
- Slides due on Blackboard by midnight on 12/14

How to design good slides

Hitchcock's rule

Hitchcock's rule

The size of any object in your frame should be proportional to its importance to the story at that moment

Watch this example

Hitchcock's rule

The size of any object in your frame slide should be proportional to its importance to the story at that moment ...and finally you will read this

You will read this first

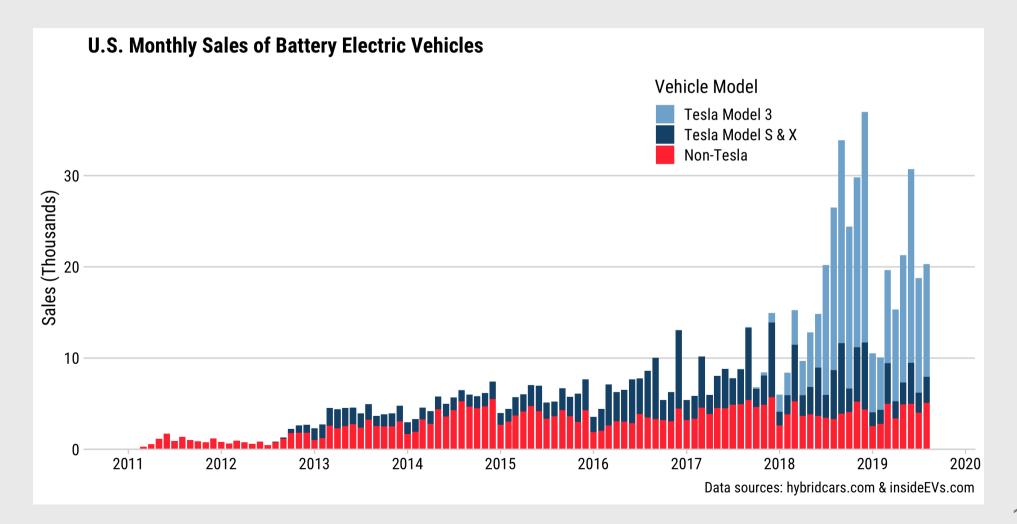
and then you will read this

10 / 81

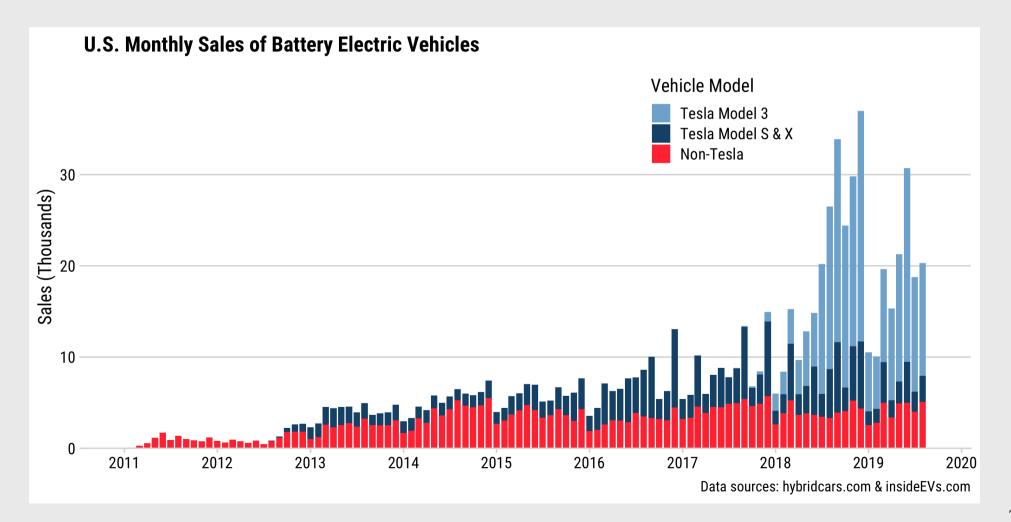
Main point at top and use a big font!

(see Stephanie Evergreen's blog post "So What?")

Except for Tesla, EV adoption in the U.S. is **flat**



Tesla's Model 3 is a Game Changer for EVs



> 40pt font for titles

> 24pt font for all other text

(Exception: footer text can be small)

Avoid fonts like

Comic Sans

Papyrus

They make your work look amateurish

Consider using a light-colored background (tan / gray)

Use high contrast between font and background color

Dark text on a light background works well Light text on a dark background also works well

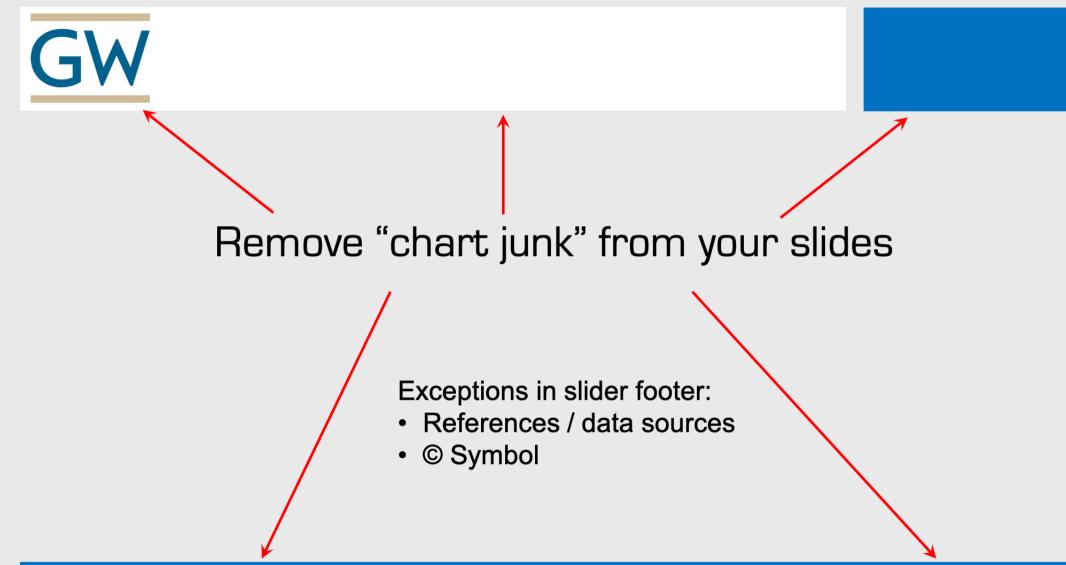
Use high contrast between font and background color

Yellow text on a white background is horrible Blue text on a black background is horrible

1 slide, 1 idea

Break up main points into multiple slides

Number your slides!



Example of an acceptable slide footer

If you are in person, consider using handouts (1-2 pages)

How to design good slides

- **Hitchcock's rule**: The size of any object on your slide should be proportional to its importance to the story at that moment
- Slide titles: A single statement about what slide means (in big font!)
- Use large font sizes (>40 titles, >24 text)
- Consider using a light-colored background (tan / gray)
- Use high contrast between font and background color
- Don't use silly fonts like Comic Sans, Papyrus, etc.
- 1 slide, 1 idea: Break up main points into multiple slides
- Slide numbers: bottom-left or bottom-right
- **Remove "chart junk"**: logos, etc. (exception: small footers)
- Consider using handouts
- Don't pack the slide with bullet lists (see what I did there?)

Week 14: Exam Review & Final Analysis Overview

1. Final Report & Presentation

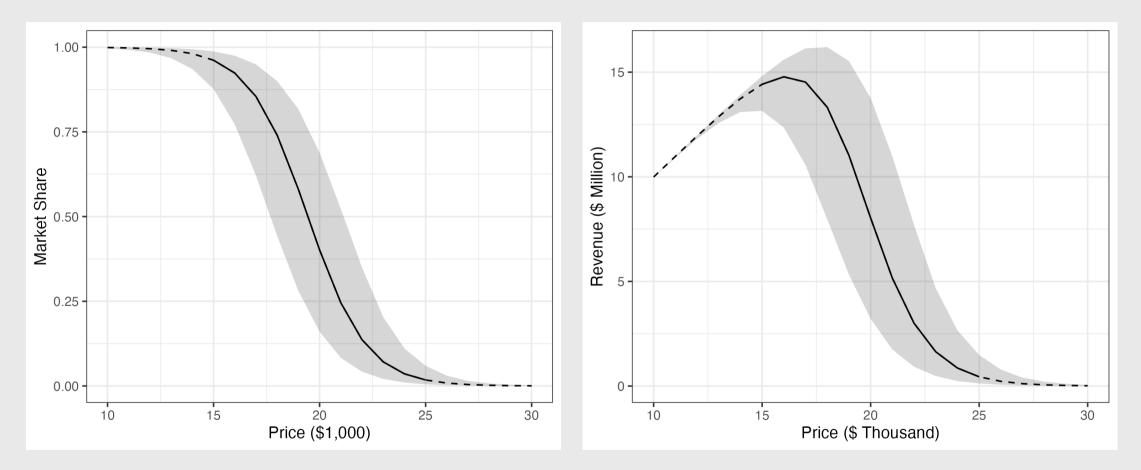
2. Sensitivity Analysis

BREAK

3. Exam Review

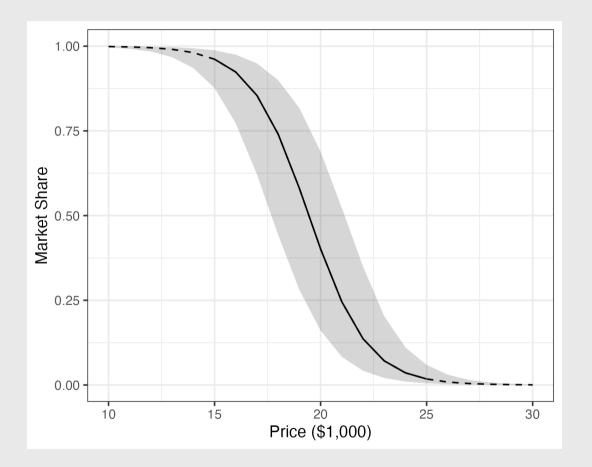
Market share sensitivity to price

Revenue sensitivity to price



R = Q * P

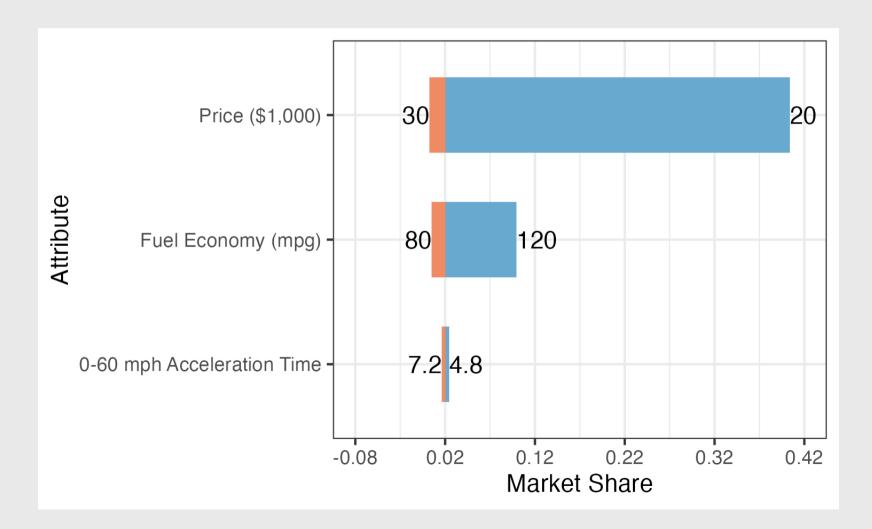
Market share sensitivity to price



Observations

- Solid line reflects *interpolation* (attribute range in survey)
- Dashed line reflects *extrapolation* (beyond attribute range in survey)
- Ribbon reflects *parameter uncertainty*

Market share sensitivity to all attributes



Market share sensitivity to all attributes



Observations

- Middle point reflects baseline market share:
 - **Price**: \$25,000
 - Fuel Economy: 100 mpg
 - **0-60 mph Accel. time**: 6 sec
- Boundaries on each attribute should reflect max feasible attribute bounds

Sensitivity analyses

- 1. Open logitr-cars
- 2. Open code/9.1-compute-sensitivity.R
- 3. Open code/9.2-plot-sensitivity.R

Break

Week 14: Exam Review & Final Analysis Overview

1. Final Report & Presentation

2. Sensitivity Analysis

BREAK

3. Exam Review

Things I'm covering

- Data wrangling in R
- Utility models
- Maximum likelihood estimation
- Optimization
- Uncertainty
- Design of experiment
- WTP
- Market simulations
- Sub-group models
- Using R for all of the above (e.g., estimating models wiht logitr)

Things I'm **not** covering

- formr.org
- Mixed logit

Data wrangling in R

Steps to importing external data files

1. Create a path to the data

library(here)
path_to_data <- here('data', 'data.csv')
path_to_data</pre>

#> [1] "/Users/jhelvy/gh/0MADD/2021-Fall/class/14-review/data/data.csv"

2. Import the data

library(tidyverse)
data <- read_csv(path_to_data)</pre>

Steps to importing external data files

library(tidyverse)

data <- read_csv(here::here('data', 'data.csv'))</pre>

The main dplyr "verbs"

"Verb"	What it does
<pre>select()</pre>	Select columns by name
filter()	Keep rows that match criteria
<pre>arrange()</pre>	Sort rows based on column(s)
<pre>mutate()</pre>	Create new columns

Example data frame

```
beatles <- tibble(
    firstName = c("John", "Paul", "Ringo", "George"),
    lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased = c(TRUE, FALSE, FALSE, TRUE)
)</pre>
```

beatles

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	3
#>	1	John	Lennon	guitar	1940	TRUE
#>	2	Paul	McCartney	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

filter() and select():

Get the first & last name of members born after 1941 & are still living

beatles %>%
 filter(yearOfBirth > 1941, deceased == FALSE) %>%
 select(firstName, lastName)

#> # A tibble: 1 × 2
#> firstName lastName
#> <chr> <chr> #> 1 Paul McCartney

Create new variables with mutate()

Use the yearOfBirth variable to compute the age of each band member

beatles %>%
 mutate(age = 2021 - yearOfBirth) %>%
 arrange(age)

#> #	A tibble:	4 × 6				
#>	firstName	lastName	instrument	year0fBirth	deceased	age
#>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>	<dbl></dbl>
<i>#</i> > 1	George	Harrison	guitar	1943	TRUE	78
#> 2	Paul	McCartney	bass	1942	FALSE	79
# > 3	John	Lennon	guitar	1940	TRUE	81
<i>#</i> > 4	Ringo	Starr	drums	1940	FALSE	81

Handling if/else conditions

ifelse(<condition>, <if TRUE>, <else>)

beatles %>%
 mutate(playsGuitar = ifelse(instrument == "guitar", TRUE, FALSE))

#> #>	<chr></chr>	lastName <chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>	playsGuitar <lgl></lgl>	
#> 1	John	Lennon	guitar	1940	TRUE	TRUE	
<i>#</i> > 2	Paul	McCartney	bass	1942	FALSE	FALSE	
#> 3	Ringo	Starr	drums	1940	FALSE	FALSE	
# > 4	George	Harrison	guitar	1943	TRUE	TRUE	

Utility models

Random utility model

The utility for alternative j is

$$ilde{u}_j = v_j + ilde{arepsilon}_j$$

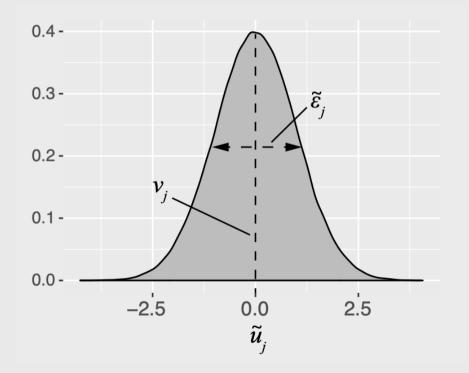
 v_j = Things we observe (non-random variables)

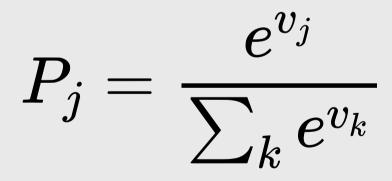
 $\tilde{\varepsilon}_j$ = Things we *don't* observe (random variable)

Logit model: Assume that $\tilde{\varepsilon}_j \sim \text{Gumbel Distribution}$

$$ilde{u}_j = v_j + ilde{arepsilon}_j$$

Probability of choosing alternative *j*:





Notation Convention

Continuous:
$$x_j$$
 Discrete: δ_j

$$u_j = eta_1 x_j^{ ext{price}} + \dots$$

$$u_j = eta_1 \delta_j^{ ext{ford}} + eta_2 \delta_j^{ ext{gm}} \dots$$

<pre>#> brand brand_BMW brand_Ford brand_</pre>	GM
#> 1 Ford 0 1	0
#> 2 GM Ø Ø	1
#> 3 BMW 1 0	0

Dummy-coded variables

Dummy coding: 1 = "Yes", 0 = "No"

Data frame with one variable: *brand*

Add dummy columns for each brand

<pre>data <- data.frame(brand = c("Ford", "GM", "BMW")) data</pre>	<pre>library(fastDummies) dummy_cols(data, "brand")</pre>			
#> brand #> 1 Ford #> 2 GM #> 3 BMW	<pre>#> brand brand_BMW brand_Ford brand_GM #> 1 Ford 0 1 0 #> 2 GM 0 0 1 #> 3 BMW 1 0 0</pre>			

Modeling *continuous* variable

$$v_j=eta_1 x^{ ext{price}}$$

model <- logitr(
 data = data,
 choice = "choice",
 obsID = "obsID",
 pars = "price"
)</pre>

Modeling *discrete* variable

$$v_j = eta_1 \delta_j^{ ext{ford}} + eta_2 \delta_j^{ ext{gm}}$$

```
model <- logitr(
    data = data,
    choice = "choice",
    obsID = "obsID",
    pars = c("brand_Ford", "brand_GM")</pre>
```

Reference level: *BMW*

Coef.	Interpretation
β1	how utility changes with increasing <i>price</i>

Coef.	Interpretation
β1	utility for <i>Ford</i> relative to <i>BMW</i>
β2	utility for <i>GM</i> relative to <i>BMW</i>

Estimating utility models

Open logitr-cars.Rproj
 Open code/3.1-model-mnl.R

mnl_dummy

All discrete (dummy-code) variables

```
pars = c(
 "price 20", "price 25",
 "fuelEconomy_25", "fuelEconomy_30",
 "accelTime_7", "accelTime_8",
 "powertrain Electric")
```

Reference Levels:

- Price: 15
- Fuel Economy: 20
- Accel. Time: 6
- Powertrain: "Gasoline"

All continuous (linear), except for powertrain Electric

```
pars = c(
  'price', 'fuelEconomy', 'accelTime',
  'powertrain_Electric')
```

Reference Levels:

Powertrain: "Gasoline"

Practice Question 1

Let's say our utility function is:

$$v_j = eta_1 x_j^{ ext{price}} + eta_2 x_j^{ ext{cacao}} + eta_3 \delta_j^{ ext{hershey}} + eta_4 \delta_j^{ ext{lindt}}$$

And we estimate the following coefficients:

Parameter	Coefficient
eta_1	-0.1
eta_2	0.1
eta_3	-2.0
eta_4	-0.1

What are the expected probabilities of choosing each of these bars using a logit model?

Attribute	Bar 1	Bar 2	Bar 3
Price	\$1.20	\$1.50	\$3.00
% Cacao	10%	60%	80%
Brand	Hershey	Lindt	Ghirardelli

Maximum likelihood estimation

Maximum likelihood estimation

$$\tilde{u}_{j} = \boldsymbol{\beta}' \mathbf{x}_{j} + \tilde{\varepsilon}_{j}$$
$$= \beta_{1} x_{j1} + \beta_{2} x_{j2} + \dots + \tilde{\varepsilon}_{j}$$

Weights that denote the *relative* value of attributes

 x_{j1}, x_{j2}, \ldots

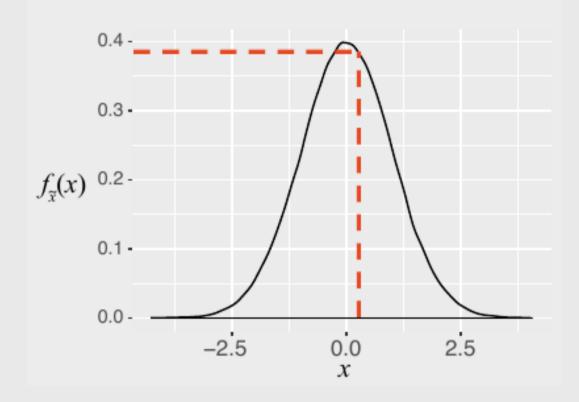
Estimate β_1 , β_2 , ..., by minimizing the negative log-likelihood function:

minimize
$$-\ln(\mathcal{L}) = -\sum_{j=1}^{J} y_j \ln[P_j(\boldsymbol{\beta}|\mathbf{x})]$$

with respect to β

 $y_j = 1$ if alternative j was chosen $y_j = 0$ if alternative j was not chosen

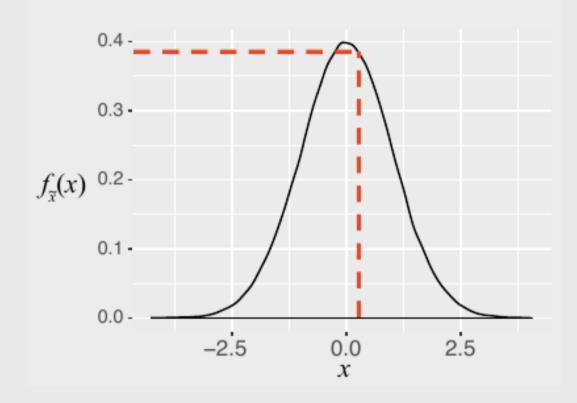
Computing the likelihood



x: an observation

f(x): probability of observing x

Computing the likelihood



x: an observation

f(x): probability of observing x

 $\mathcal{L}(\theta|x)$: probability that θ are the true parameters, given that observed x

$$\mathcal{L}(heta|x) = f(x_1)f(x_2)\dots f(x_n)$$

Log-likelihood converts multiplication to summation:

 $\ln \mathcal{L}(heta|x) = \ln f(x_1) + \ln f(x_2) \dots \ln f(x_n)$

Practice Question 2

Observations - Height of students (inches):

#> [1] 65 69 66 67 68 72 68 69 63 70

a) Let's say we know that the height of students, \tilde{x} , in a classroom follows a normal distribution. A professor obtains the above height measurements students in her classroom. What is the log-likelihood that $\tilde{x} \sim \mathcal{N}(68, 4)$? In other words, compute $\ln \mathcal{L}(\mu = 68, \sigma = 4)$.

b) Compute the log-likelihood function using the same standard deviation ($\sigma = 4$) but with the following different values for the mean, $\mu : 66, 67, 68, 69, 70$. How do the results compare? Which value for μ produces the highest log-likelihood?

Optimization

Optimality conditions

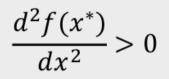
<u>First order necessary condition</u> x^* is a "stationary point" when

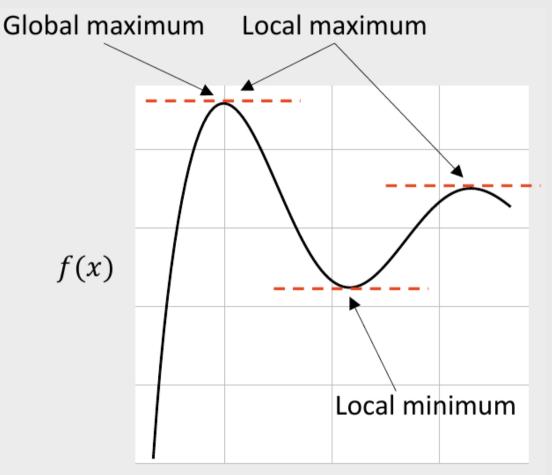
$$\frac{df(x^*)}{dx} = 0$$

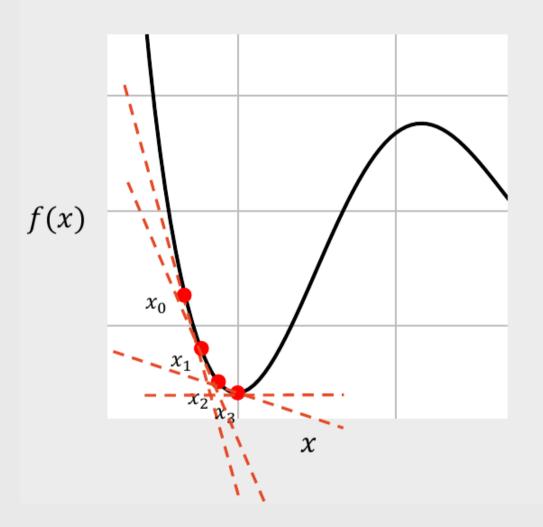
Second order sufficiency condition x^* is a local *maximum* when

$$\frac{d^2 f(x^*)}{dx^2} <$$

 x^* is a local *minimum* when







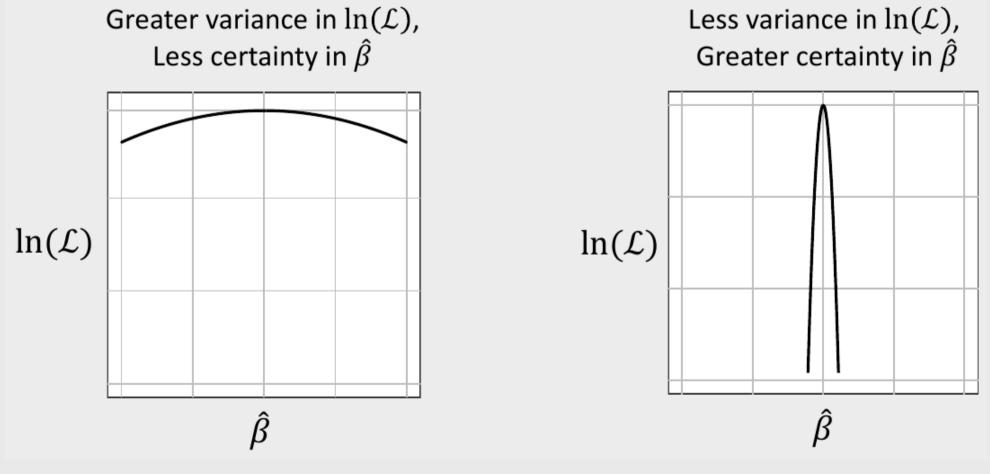
Gradient Descent Method:

- 1. Choose a starting point, x_0
- 2. At that point, compute the gradient, $\nabla f(x_0)$
- 3. Compute the next point, with a step size γ :

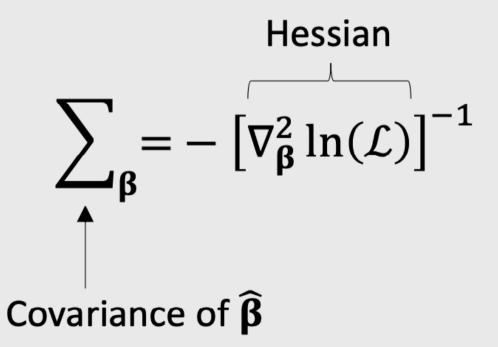
$$\begin{aligned} x_{n+1} &= x_n - \gamma \nabla f(x_n) \\ & & \text{Very small} \\ \text{Stop when } \nabla f(x_n) < \delta & & \text{number} \\ & & \text{or} \\ \\ \text{Stop when } (x_{n+1} - x_n) < \delta \end{aligned}$$

Uncertainty

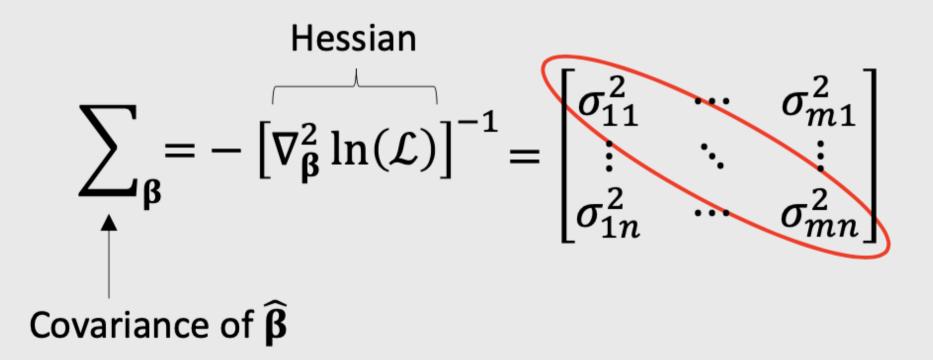
The certainty of $\widehat{\beta}$ is inversely related to the curvature of the log-likelihood function



The *curvature* of the log-likelihood function is inversely related to the hessian



The *curvature* of the log-likelihood function is inversely related to the hessian



Usually report parameter uncertainty ("standard errors") with σ values



Two approaches for obtaining confidence interval

Using Standard Errors

1. Get coefficients, beta
2. Get covariance matrix, covariance
3. se <- sqrt(diag(covariance))
4. coef_ci <- c(beta - 2*se, beta + 2*se)</pre>

Using Simulated Draws

- 1. Get coefficients, beta
- 2. Get covariance matrix, covariance
- 3.draws <- as.data.frame(MASS::mvrnorm(10^5, beta, covariance))</pre>
- 4. coef_ci <- maddTools::ci(draws, ci = 0.95)</pre>

In-class example

Model from logitr

```
# 1. Get coefficients
beta <- c(
    price = -0.7, mpg = 0.1, elec = -4.0)
# 2. Get covariance matrix
hessian <- matrix(c(
    -6000, 50, 60,
    50, -700, 50,
    60, 50, -300),
    ncol = 3, byrow = TRUE)
covariance <- -1*solve(hessian)</pre>
```

beta <- coef(model)
covariance <- vcov(model)</pre>

Practice Question 3

Suppose we estimate the following utility model describing preferences for cars:

 $u_j = lpha p_j + eta_1 x_j^{mpg} + eta_2 x_j^{elec} + arepsilon_j$

Compute a 95% confidence interval around the coefficients using:

a) Standard errors b) Simulated draws

The estimated model produces the following results:

Parameter	Coefficient
α	-0.7
eta_1	0.1
eta_2	-0.4

Hessian:

$$\begin{bmatrix} -6000 & 50 & 60 \\ 50 & -700 & 50 \\ 60 & 50 & -300 \end{bmatrix}$$
 66 / 8

Design of experiment

Wine Pairings Example

meat wine

fish white

fish red

steak white

steak red

Main Effects

1. Fish or Steak?

2. Red or White wine?

Interaction Effects

Red or White wine with Steak?
 Red or White wine with Fish?

"D-optimal" designs maximize **main** effect information but confound **interaction** effect information

$$D = \left(rac{|oldsymbol{I}(oldsymbol{eta})|}{n^p}
ight)^{1/p}$$

where p is the number of coefficients in the model and n is the total sample size

WTP

Willingness to Pay (WTP)

$$ilde{u}_j = lpha p_j + oldsymbol{eta} x_j + ilde{arepsilon_j}$$

$$oldsymbol{\omega} = rac{oldsymbol{eta}}{-lpha}$$

Computing WTP with draws

$$\hat{oldsymbol{\omega}} = rac{\hat{oldsymbol{eta}}}{-\hat{lpha}}$$

<pre>draws_other <- draws[,2:ncol(draws)] draws_price <- draws[,1] draws_wtp < draws_other ((1)draws_price)</pre>	Mean WTP with confidence interval
<pre>draws_wtp <- draws_other / (-1*draws_price) head(draws_wtp)</pre>	<pre>maddTools::ci(draws_wtp)</pre>
<pre>#> [,1] [,2] #> [1,] 0.10069956 -5.845472 #> [2,] 0.14959437 -5.808602 #> [3,] 0.20743359 -5.874524</pre>	<pre>#> mean lower upper #> 1 0.1426251 0.03758061 0.2494388 #> 2 -5.7193063 -5.97968329 -5.4715373</pre>
<pre>#> [4,] 0.32113064 -5.655103 #> [5,] 0.20449059 -5.723632 #> [6,] 0.02892836 -5.916094</pre>	72 /

81

Willingness to Pay (WTP)

"Preference Space"

$$ilde{u}_j = lpha p_j + oldsymbol{eta} x_j + ilde{arepsilon_j}$$

$$oldsymbol{\omega} = rac{oldsymbol{eta}}{-lpha}$$

$$\lambda = -lpha$$

$$ilde{u}_j = \lambda(oldsymbol{\omega} x_j - p_j) + ilde{arepsilon_j}$$

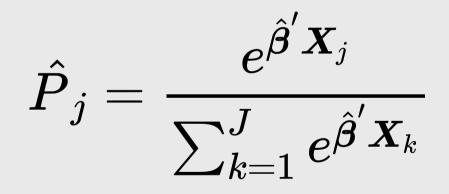
WTP space models have non-convex log-likelihood functions!

Use multi-start loop with random starting points

Market simulations

Simulate Market Shares

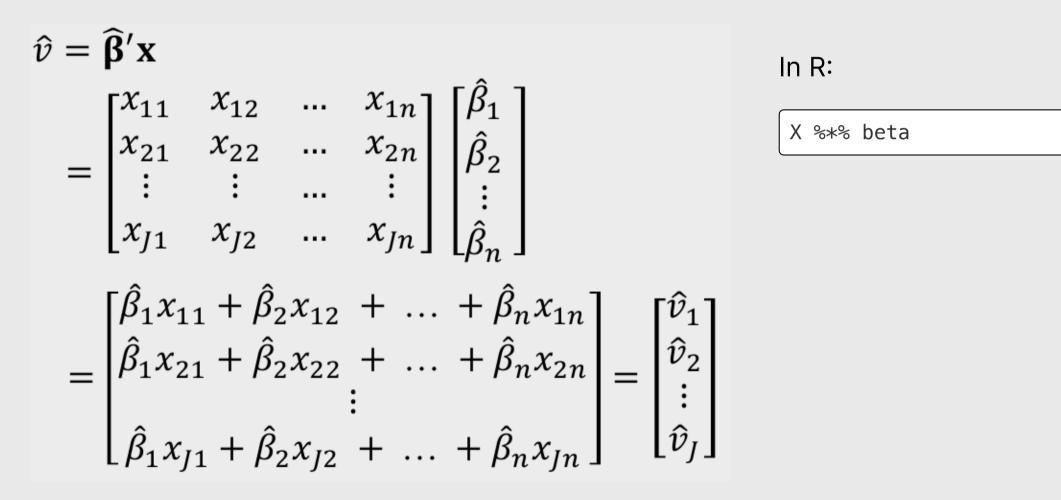
- 1. Define a market, \boldsymbol{X}
- 2. Compute shares:



Simulate Market Shares

$$\begin{split} \hat{v} &= \widehat{\beta}' \mathbf{x} \\ &= \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{J1} & x_{J2} & \dots & x_{Jn} \end{bmatrix} \begin{bmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \\ \vdots \\ \widehat{\beta}_n \end{bmatrix} \\ &= \begin{bmatrix} \widehat{\beta}_1 x_{11} + \widehat{\beta}_2 x_{12} + \dots + \widehat{\beta}_n x_{1n} \\ \widehat{\beta}_1 x_{21} + \widehat{\beta}_2 x_{22} + \dots + \widehat{\beta}_n x_{2n} \\ \vdots \\ \widehat{\beta}_1 x_{J1} + \widehat{\beta}_2 x_{J2} + \dots + \widehat{\beta}_n x_{Jn} \end{bmatrix} = \begin{bmatrix} \widehat{v}_1 \\ \widehat{v}_2 \\ \vdots \\ \widehat{v}_J \end{bmatrix} \end{split}$$

Simulate Market Shares



Simulating Market Shares with Uncertainty

Rely on the predict() function to compute shares with uncertainty.

Internally, it:

- 1. Takes draws of $oldsymbol{eta}$
- 2. Computes P_j for each draw
- 3. Returns mean and confidence interval computed from draws

Review the logitr-cars examples

Your Turn

As a team:

- Read in and clean your final data.
- Estimate a baseline model.
- Set your baseline market simulation case.
- Compute sensitivities to price and other attributes.

