

Week 2: Data Wrangling

☎ EMSE 6035: Marketing Analytics for Design Decisions

John Paul Helveston

i September 08, 2021

Required Packages (check notes. R file)

Make sure you have these libraries installed:

install.packages(c("tidyverse", "here"))

Remember: you only need to install packages once!

Once installed, you'll need to *load* the libraries every time you open RStudio:

library(tidyverse)
library(here)

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*

BREAK

3. Project proposals

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*

BREAK

3. Project proposals

The data frame...in Excel

•			÷ ق ∓	;				
	Home Ir	nsert Pag	le Layout	Formulas	Data	Review V	/iew	
H	rom From TML Text	New Database Query	Refresh All	Connection Properties Connection	s Az↓ Z↓	Az Filte	r 🌾 Advan	ced Te Co
11	7 🌲	× √ fs	¢					
	Α	В	С	D	E	F	G	н
1	firstName	lastName	instrument	yearOfBirth	deceased			
2	John	Lennon	guitar	1940	TRUE			
3	Paul	McCartney	bass	1942	FALSE			
4	Ringo	Starr	drums	1940				
5	George	Harrison	guitar	1943	TRUE			
6								_
7								_
8 9								_
10								_
11								_
12								_
13								
14								_
15								

The data frame...in R

```
beatles <- tibble(
    firstName = c("John", "Paul", "Ringo", "George"),
    lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased = c(TRUE, FALSE, FALSE, TRUE)
)</pre>
```

beatles

I	#>	#	A tibble:	4 × 5			
I	#>		firstName	lastName	instrument	year0fBirth	deceased
1	#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
1	#>	1	John	Lennon	guitar	1940	TRUE
1	#>	2	Paul	McCartney	bass	1942	FALSE
1	#>	3	Ringo	Starr	drums	1940	FALSE
1	#>	4	George	Harrison	guitar	1943	TRUE

Columns: *Vectors* of values (must be same data type)

beatles

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
#>	1	John	Lennon	guitar	1940	TRUE
#>	2	Paul	McCartney	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

Extract a column using \$

beatles\$firstNa	ame			
#> [1] "John"	"Paul"	"Ringo"	"George"	

Rows: Information about individual observations

Information about *John Lennon* is in the first row:

beatles[1,]

I	#>	#	A tibble:	1 × 5			
I	#>		firstName	lastName	instrument	year0fBirth	deceased
I	#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
I	#>	1	John	Lennon	guitar	1940	TRUE

Information about Paul McCartney is in the second row:

Take a look at the beatles data frame in notes.R

Getting data into R

- 1. Load external packages
- 2. Read in external files (usually a .csv* file)

*csv = "comma-separated values"

Data from an R package

library(ggplot2)

See which data frames are available in a package:

data(package = "ggplot2")

Find out more about a package data set:

?msleep

Back to notes.R

Importing an external data file

Note the data.csv file in your data folder.

- **DO NOT** double-click it!
- **DO NOT** open it in Excel!

Excel can corrupt your data!

If you **must** open it in Excel:

- Make a copy
- Open the copy

Steps to importing external data files

1. Create a path to the data

library(here)
path_to_data <- here('data', 'data.csv')
path_to_data</pre>

#> [1] "/Users/jhelvy/gh/0gw/MADD/2021-Fall/class/2-data-wrangling/data/data.csv"

2. Import the data

library(tidyverse)
data <- read_csv(path_to_data)</pre>

Using the **here** package to make file paths

The here() function builds the path to your **root** to your *working directory* (this is where your **.** Rproj file lives!)

here()

#> [1] "/Users/jhelvy/gh/0gw/MADD/2021-Fall/class/2-data-wrangling"

The here() function builds the path to files *inside* your working directory

```
path_to_data <- here('data', 'data.csv')
path_to_data</pre>
```

#> [1] "/Users/jhelvy/gh/0gw/MADD/2021-Fall/class/2-data-wrangling/data/data.csv"

Avoid hard-coding file paths!

(they can break on different computers)

```
path_to_data <- 'data/data.csv'
path_to_data</pre>
```

#> [1] "data/data.csv"

Back to reading in data

path_to_data <- here('data', 'data.csv')
data <- read_csv(path_to_data)</pre>

Important: Use read_csv() instead of read.csv()

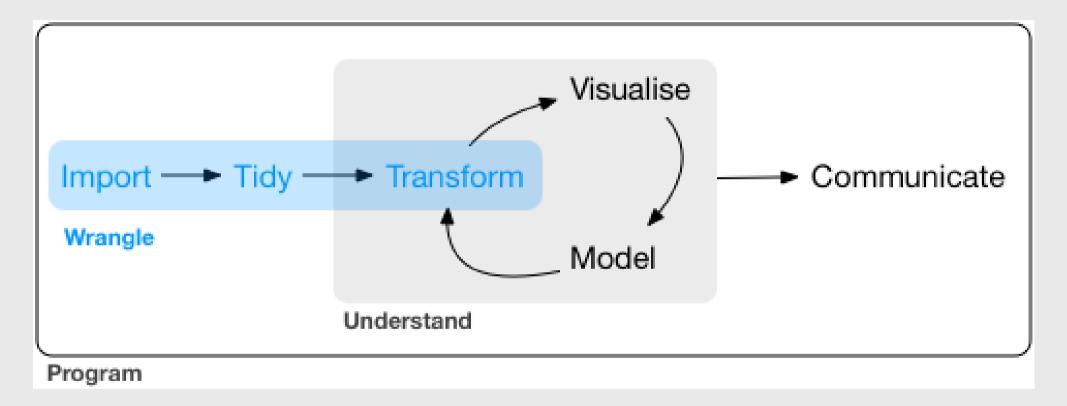
Think-Pair-Share

1) Use the here() and read_csv() functions to load the data.csv file that is in the data folder. Name the data frame object data.

2) Use the data object to answer the following questions:

- How many rows and columns are in the data frame?
- What type of data is each column? (Just look, don't need to type out the answer)
- Preview the different columns what do you think this data is about? What might one row represent?
- How many unique airlines are in the data frame?
- What is the earliest and latest observation in the data frame?
- What is the shortest and longest air time for any one flight in the data frame?

Week 2: Data Wrangling


- 1. Working with data frames
- 2. Data wrangling with the *tidyverse*
- BREAK
- 3. Project proposals

The tidyverse: stringr + dplyr + readr + ggplot2 + ...

Art by Allison Horst

80% of the job is data wrangling

Today: data wrangling with **dplyr**

Art by Allison Horst

The main dplyr "verbs"

"Verb"	What it does
<pre>select()</pre>	Select columns by name
filter()	Keep rows that match criteria
<pre>arrange()</pre>	Sort rows based on column(s)
<pre>mutate()</pre>	Create new columns
<pre>summarize()</pre>	Create summary values

Core tidyverse concept: Chain functions together with "pipes"

Think of the words "...and then ... "

data %>%
 do_something() %>%
 do_something_else()

Think of %>% as the words "...and then..."

Without Pipes (read from inside-out):

leave_house(get_dressed(get_out_of_bed(wake_up(me))))

With Pipes:

me %>%
 wake_up %>%
 get_out_of_bed %>%
 get_dressed %>%
 leave_house


```
beatles <- tibble(
    firstName = c("John", "Paul", "Ringo", "George"),
    lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased = c(TRUE, FALSE, FALSE, TRUE)
)</pre>
```

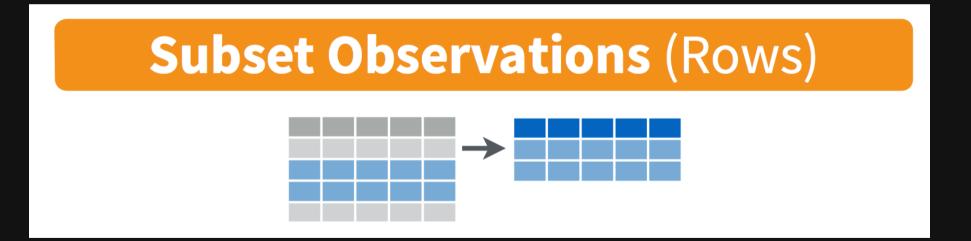
beatles

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	
#>	1	John	Lennon	guitar	1940	TRUE
#>	2	Paul	McCartney	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

Select the columns firstName & lastName

<pre>beatles %>% select(first</pre>	<pre>beatles %>% select(firstName, lastName)</pre>					
<pre>#> # A tibble: #> firstName #> <chr> #> 1 John #> 2 Paul #> 3 Ringo #> 4 George</chr></pre>						

Use the – sign to drop columns

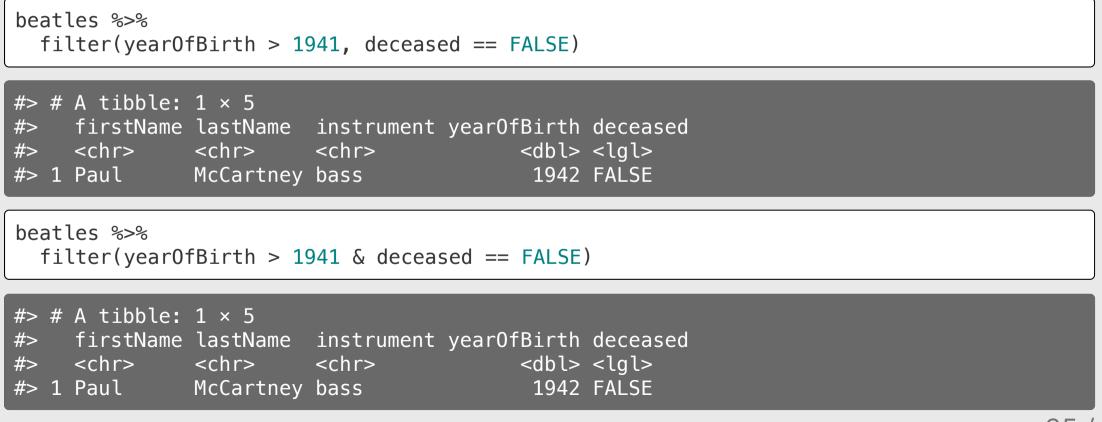

	les %>% lect(–firstNa	ame, –lastNa	ame)			
#> #> #> 1 #> 2 #> 3	A tibble: 4 instrument y <chr> guitar bass drums guitar</chr>	vearOfBirth <dbl> 1940 1942</dbl>	<lgl> TRUE FALSE FALSE</lgl>			

Select columns based on name criteria:

- ends_with() = Select columns that end with a character string
- contains() = Select columns that contain a character string
- matches() = Select columns that match a regular expression
- one_of() = Select column names that are from a group of names

Select the columns that end with "Name":

<pre>beatles %>% select(ends_with("Name"))</pre>
<pre>#> # A tibble: 4 × 2 #> firstName lastName #> <chr> <chr> #> 1 John Lennon #> 2 Paul McCartney #> 3 Ringo Starr #> 4 George Harrison</chr></chr></pre>


Select the band members born after 1941

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
#>	1	John	Lennon	guitar	1940	TRUE
#>	2	Paul	<i>McCartney</i>	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

Select the band members born after 1941

<pre>beatles %>% filter(yearOfBirth > 1941)</pre>						
<pre>#> # A tibble: 2 × 5 #> firstName lastName #> <chr> <chr> #> 1 Paul McCartney #> 2 George Harrison</chr></chr></pre>		<lgl> FALSE</lgl>				

Select the band members born after 1941 & are still living

Logic operators for filter()

Description		Examp	ole	
Values greater than 1	value	> 1		
Values greater than or equal to 1	value	>= 1		
Values less than 1	value	< 1		
Values less than or equal to 1	value	<= 1		
Values equal to 1	value	== 1		
Values not equal to 1	value	!= 1		
Values in the set c(1, 4)	value	%in%	c(1,	4)

Removing missing values

Drop all rows where variable is NA

data %>%
 filter(!is.na(variable))

Combine filter() and select()

Get the **first & last name** of members born after 1941 & are still living

beatles %>%
 filter(yearOfBirth > 1941, deceased == FALSE) %>%
 select(firstName, lastName)

#> # A tibble: 1 × 2
#> firstName lastName
#> <chr> <chr> #> 1 Paul McCartney

Think-Pair-Share

1) Use the here() and read_csv() functions to load the data.csv file that is in the data folder. Name the data frame object data.

2) Use the data object and the select() and filter() functions to answer the following questions:

- Create a new data frame, flights_fall, that contains only flights that departed in the fall semester.
- Create a new data frame, **flights_dc**, that contains only flights that flew to DC airports (Reagan or Dulles).
- Create a new data frame, **flights_dc_carrier**, that contains only flights that flew to DC airports (Reagan or Dulles) and only the columns about the month and airline.
- How many unique airlines were flying to DC airports in July?

Create new variables with mutate()

Art by Allison Horst

Create new variables with mutate()

Use the yearOfBirth variable to compute the age of each band member

<pre>beatles %>% mutate(age = 2021 -</pre>	yearOfBirth)			
<pre>#> # A tibble: 4 × 6 #> firstName lastName #> <chr> <chr> #> 1 John Lennon #> 2 Paul McCartney #> 3 Ringo Starr #> 4 George Harrison</chr></chr></pre>	<chr> guitar bass drums</chr>	rOfBirth deceased <dbl> <lgl> 1940 TRUE 1942 FALSE 1940 FALSE 1943 TRUE</lgl></dbl>	age <dbl> 81 79 81 78</dbl>	

You can *immediately* use new variables

<pre>beatles %>% mutate(age = 2021 - yea meanAge = mean(a</pre>						
<pre>#> # A tibble: 4 × 7 #> firstName lastName #> <chr> <chr> <chr> #> 1 John Lennon #> 2 Paul McCartney #> 3 Ringo Starr #> 4 George Harrison</chr></chr></chr></pre>	<chr> guitar bass drums</chr>	<pre>dbl> 1940 1942 1940</pre>	deceased <lgl> TRUE FALSE FALSE TRUE</lgl>	age <dbl> 81 79 81 78</dbl>	meanAge <dbl> 79.8 79.8 79.8 79.8 79.8</dbl>	

Handling if/else conditions

ifelse(<condition>, <if TRUE>, <else>)

beatles %>%
 mutate(playsGuitar = ifelse(instrument == "guitar", TRUE, FALSE))

#> # A tib	ble: 4 × 6		
#> first	Name lastName instrument	yearOfBirth deceased	playsGuitar
#> <chr></chr>	<pre>chr> <chr></chr></pre>	<dbl> <lgl></lgl></dbl>	<lgl></lgl>
#> 1 John	Lennon guitar	1940 TRUE	TRUE
#> 2 Paul	McCartney bass	1942 FALSE	FALSE
#> 3 Ringo	Starr drums	1940 FALSE	FALSE
#> 4 Georg	e Harrison guitar	1943 TRUE	TRUE

Sort data frame with arrange()

Sort beatles data frame by year of birth

<pre>beatles %>% arrange(year0fBirth)</pre>			
<pre>#> # A tibble: 4 × 5 #> firstName lastName #> <chr> <chr> <chr> #> 1 John Lennon #> 2 Ringo Starr #> 3 Paul McCartney #> 4 George Harrison</chr></chr></chr></pre>	<chr> guitar drums bass</chr>	<pre><dbl> 1940 1940 1942</dbl></pre>	

Sort data frame with arrange()

Use the desc() function to sort in descending order

<pre>beatles %>% arrange(desc(yearOf</pre>	Birth))		
<pre>#> # A tibble: 4 × 5 #> firstName lastName #> <chr> <chr> #> 1 George Harrison #> 2 Paul McCartne #> 3 John Lennon #> 4 Ringo Starr</chr></chr></pre>	<chr> guitar</chr>	orOfBirth deceased <dbl> <lgl> 1943 TRUE 1942 FALSE 1940 TRUE 1940 FALSE</lgl></dbl>	

Sort rows with arrange()

Compute the band member age, then sort based on the youngest:

beatles %>%
mutate(age = <mark>2021</mark> – yearOfBirth) %>%
arrange(age)

	#> #	A tibble:	4 × 6				
	#>	firstName	lastName	instrument	year0fBirth	deceased	age
	#>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>	<dbl></dbl>
	# > 1	George	Harrison	guitar	1943	TRUE	78
	#> 2	Paul	McCartney	bass	1942	FALSE	79
	#> 3	John	Lennon	guitar	1940	TRUE	81
1	#> 4	Ringo	Starr	drums	1940	FALSE	81

Think pair share

1) Use the here() and read_csv() functions to load the data.csv file that is in the data folder. Name the data frame object data.

2) Using the data object, create the following new variables:

- **speed**: The speed in mph, computed from the time (in minutes) and distance (in miles) variables.
- **dep_delay_hour**: Is **TRUE** if the departure delay is greater or equal to one hour, **FALSE** otherwise.

3) Which flight flew the fastest?

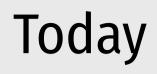
4) Remove rows that have NA for air_time and re-arrange the resulting data frame based on the longest air time and longest flight distance.

Break

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*


BREAK

3. Project proposals

Project Proposal Guidelines

Proposal Items

ltem	Description				
Abstract	Product / technology in just a few sentences				
Introduction	Description, picture, background				
Market Opportunity	Identify your customer, competitors, and market size				
Product Attributes & Decision Variables	2-4 key variables related to product's design and performance				
Questions	Major outstanding questions to be resolved				

Market Opportunity

Product Attributes

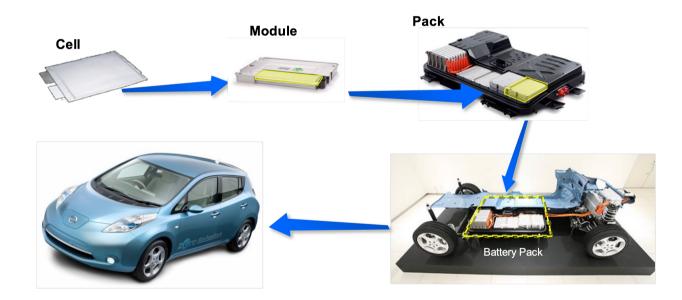
Decision Variables

- Identify customer
- Identify competitors
- Identify market size

Features your *customer* cares about

Features that *the designer* cares about

Example: Folding solar panels


Who is your customer?

- General public?
- Outdoor enthusiasts?
- Emergency gear?

Competitors?

- Similar folding panels
- Batteries?

Example: Electric vehicle battery

Who is your customer?

• Car buyers

Competitors?

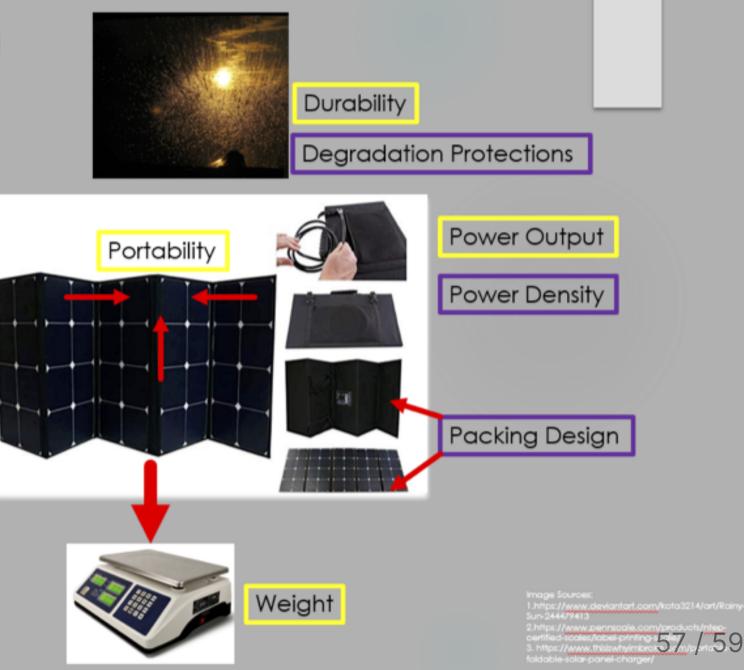
- Hybrid vehicles?
- Efficient gasoline vehicles?

Product Attributes

Decision Variables

Features your *customer* cares about

Features that the designer cares about


Product Diagram

Attribute Units

Price-USD Weight-Kg Power Output - Watts Durability - Months Portability - LxWxH

Decision Variable Units

Power Density – W/Kg Degradation Rate – Hours Packing Design – Cm³

Model Relationships Table (example)

		Decision Variables			Demand			
		Power Density	Degradation Rate	Packing Design		Aims Solar Panel	SUAOKI Solar Charger	Units
tes	Price	-	-	+	-	225	160	USD
Attributes	Weight	-	-	+	-	2.6	2.06	kg
	Power Output	+	+	+	+	120	60	W
Product	Durability	-	+	-	+	60	12	Months
Pro	Portability	-	-/+	+	+	20.6"x11"x 1.2	" 11.5"x7.1"x2.9"	L"xW"xH"
	Domain	[2.5, 60]	[24,1000]	[200, 2800]				
	Units	W/kg	Hours	cm^3				

Team Proposals

- 1. Re-arrange tables to sit with your team
- 2. Discuss & identify your customer & potential competitors
- 3. Discuss & identify key Product Attributes & Decision Variables
- 4. Start building out your model relationships table (copy from this example)

Suggestions

- You may want to start with simple bullet lists
- Start with more items rather than fewer (can always cut back later)