EMSE 6035:
 Marketing of Technology

Intro to choice modeling

John Paul Helveston, Ph.D.
Assistant Professor
Engineering Management \& Systems Engineering
The George Washington University

Review of Probability Concepts

Random Variable, \tilde{x} : A variable whose value is subject to variation due to chance

Probability Density Function (PDF)

Ex: The probability that the value of \tilde{x} is between a and b is:

$$
\operatorname{Pr}(a \leq \tilde{x} \leq b)=\int_{a}^{b} f_{\tilde{x}}(x) d x
$$

Cumulative Density Function (CDF)

Ex: The probability that the value of \tilde{x} is less than or equal to value a is:

$$
F_{\tilde{x}}(a)=\operatorname{Pr}(\tilde{x} \leq a)=\int_{-\infty}^{a} f_{\tilde{x}}(x) d x
$$

Review of Probability Concepts

Multivariable Joint Distribution

Joint distribution of multiple random variables, e.g. \tilde{x} and \tilde{y} in this figure:

Multivariate Normal Distribution

$$
f_{\tilde{x}, \tilde{y}}(x, y)
$$

Independence
Random variables are "independent" if the value of one doesn't affect the other's probability

In this case, the joint probability distribution is the multiplication of the individual distributions:

$$
f_{\tilde{x}, \tilde{y}}(x, y)=f_{\tilde{x}}(x) f_{\tilde{y}}(y)
$$

Practice Question 1

a) A random variable, \tilde{x}, has the PDF, $f_{\tilde{x}}(x)$. Write the equation to compute its total probability (hint: think area under the curve!). What is the answer to the equation?
b) A random variable, \tilde{x}, has a uniform distribution between the values 0 and 1. Draw the probability density function (PDF) and Cumulative Density Function (CDF) of \tilde{x}.
c) The value of a random variable, \tilde{x}, is determined by rolling one fair, 6 -sided dice. Draw the PDF and CDF of \tilde{x}.

Random Utility Theory

Utility: The satisfaction a consumer receives from a product

- Utility is a random variable (so we give it a squiggly line hat): \tilde{u}_{j}
- Utility has relative (not absolute) value
- Utility is unit-less

Example:

Attribute	Phone 1	Phone 2	Phone 3
Price	\$200	\$300	\$400
Battery Life	目	目	\square
Signal Quality			
Utility	\widetilde{u}_{1}	\widetilde{u}_{2}	\widetilde{u}_{3}

Random Utility Theory

Utility can be broken into two parts:

Things we can observe / measure ("Observed Utility")

Things we can't observe / measure ("Error")

Random Utility Theory

We assume that a consumer will choose product j over k if: $\tilde{u}_{j}>\tilde{u}_{k}$

Since utility is a random variable, we can only compute the probability that $\tilde{u}_{j}>\tilde{u}_{k}: \quad P_{j}=\operatorname{Pr}\left(\tilde{u}_{j}>\tilde{u}_{k}\right)$

Random Utility Theory

To compute the probability that the consumer will choose product j over k, we have to integrate over the joint distribution:

$$
\begin{aligned}
P_{j} & =\operatorname{Pr}\left(\tilde{u}_{j}>\tilde{u}_{k}\right) \\
& =\operatorname{Pr}\left(v_{j}+\tilde{\varepsilon}_{j}>v_{k}+\tilde{\varepsilon}_{k}\right) \\
& =\operatorname{Pr}\left(\tilde{\varepsilon}_{k} \leq \tilde{\varepsilon}_{j}+\left(v_{j}-v_{k}\right)\right) \\
& =\int_{\varepsilon_{j}=-\infty}^{\infty}\left[\int_{\varepsilon_{k}=-\infty}^{\tilde{\varepsilon}_{j}+\left(v_{j}-v_{k}\right)} f_{\tilde{\varepsilon}}\left(\varepsilon_{j}, \varepsilon_{k}\right) d \varepsilon_{k}\right] d \varepsilon_{j}
\end{aligned}
$$

To solve this equation, we need to assume a distribution for $\tilde{\varepsilon}$

Assumptions for $\tilde{\varepsilon}$

Name	Distribution
Probit	Normal
	$\tilde{\varepsilon} \sim N(0, \Sigma)$

Disadvantage
Supported by theory No closed for solution for integral

Type I Extreme Value
(we'll be using the logit model for this class!)

Independence of Irrelevant Alternatives [IIA]

Logit model has the IIA property, which can be problematic when products are close substitutes

Classic Example: "Red Bus" vs. "Blue Bus"

	Taxi	Red Bus
$e^{v_{j}}$	2	1
	$\frac{2}{2+1}$	$\frac{1}{2+1}$
	$=0.66$	$=0.33$

$$
P_{j}=\frac{e^{v_{j}}}{\sum_{k=1}^{J} e^{v_{k}}}
$$

We expect the $\begin{array}{llll}\text { probabilities to be: } & 0.66 & 0.165 & 0.165\end{array}$

Practice Question 2

a) A consumer is making a choice between two bars of chocolate: milk chocolate (m) and dark chocolate (d). Assume that we know the observed utility of each bar to be $v_{m}=3$ and $v_{d}=4$. Using a logit model, compute the probabilities of choosing each bar: P_{m} and P_{d}.

Hint:

$$
P_{j}=\frac{e^{v_{j}}}{\sum_{k=1}^{J} e^{v_{k}}}
$$

b) A third bar of chocolate is now added to the choice set. It is the exact same as the milk chocolate bar, but it has a slightly different wrapper (which has no effect on the consumer's utility). Now, $v_{m 1}=v_{m 2}=3$, and $v_{d}=4$. Based on the probabilities from question 2 a , what would we expect the probabilities of choosing each bar to be? What probabilities does the logit model produce?

How do we get v_{j} ？

We define v_{j} as a function of observable product attributes，x_{j} ：

$$
v_{j}=f\left(x_{j}\right)=\beta_{1} x_{j 1}+\beta_{2} x_{j 2}+\ldots
$$

Example：

Attribute	Phone 1	Phone 2	Phone 3
Price	$\$ 200$	$\$ 300$	$\$ 400$
Battery Life	首	目	目
Signal Quality			

How do we get v_{j} ?

We define v_{j} as a function of observable product attributes, x_{j} :

$$
v_{j}=f\left(x_{j}\right)=\beta_{1} x_{j 1}+\beta_{2} x_{j 2}+\ldots
$$

Example:

Attribute Phone 1 Phone 2 Phone 3

x_{1}	Price	$\$ 200$	$\$ 300$	$\$ 400$
x_{2}	Battery Life (hours)	20	15	10
x_{3}	Signal Quality	100%	80%	60%

	x_{1}
Phone 1:	$v_{2}=\beta_{1}(200)+\beta_{2}(20)+\beta_{3}(100)$
Phone 2:	$v_{2}=\beta_{1}(300)+\beta_{2}(15)+\beta_{3}(80)$
Phone 3:	$v_{3}=\beta_{1}(400)+\beta_{2}(10)+\beta_{3}(60)$

Example: Let's say $\beta_{1}=-0.01, \beta_{2}=0.1, \beta_{3}=0.05$
Phone 1: $\quad v_{1}=-0.01(200)+0.01(20)+0.02(100)=5$
Phone 2: $\quad v_{1}=-0.01(300)+0.01(15)+0.02(80)=2.5$
Phone 3: $\quad v_{1}=-0.01(400)+0.01(10)+0.02(60)=0$

Continuous vs. Discrete Attributes $\left[x_{j}\right]$

Continuous attributes

	Attribute	Phone 1	Phone 2	Phone 3
x_{1}	Price	$\$ 200$	$\$ 300$	$\$ 400$
x_{2}	Battery Life (hours)	20	15	10
x_{3}	Signal Quality	100%	80%	60%

Phone 1: $\quad v_{1}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$

Discrete (categorical) attributes

Attribute	Phone 1	Phone 2	Phone 3
Price	$\$ 200$	$\$ 300$	$\$ 400$
Battery Life (hours)	20	15	10
Signal Quality	High	Med	Low

Phone 1: $\quad v_{1}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} \delta^{\mathrm{MED}}+\beta_{4} \delta^{\mathrm{HIGH}}$

$$
\delta^{\mathrm{MED}}=1 \text { or } 0 \quad \Delta v_{1} \underbrace{\delta^{\mathrm{HIGH}}=1 \text { or } 0} \underbrace{\beta_{3}}_{\substack{\text { Med } \\ \text { Signal quality }}}
$$

Practice Question 3

Attribute	$\underline{\text { Bar 1 }}$	$\underline{\text { Bar 2 }}$	Bar 3
Price	$\$ 1.20$	$\$ 1.50$	$\$ 3.00$
\% Cacao	10%	60%	80%

a) Write out a model for the observed utility of each chocolate bar in the above set.
b) If the coefficient for the price attribute was -0.1 and the coefficient for \% Cacao attribute was 0.1 , what is the difference in the observed utility between bars 3 and 1 ?
c) With the addition of the brand attribute, repeat part a.

Extra Slides

Let's say our utility function is:

$$
u_{j}=\beta_{1} x_{j}^{p r i c e}+\beta_{2} x_{j}^{\text {cacao }}+\beta_{3} \delta_{j}^{\text {hersheys }}+\beta_{4} \delta_{j}^{\text {lindt }}+\varepsilon_{j}
$$

And we estimate the following coefficients:

Parameter	Coef.
β_{1}	-0.1
β_{2}	0.1
β_{3}	-2.0
β_{4}	-0.1

a) What are the expected probabilities of choosing each bar using a logit model?

Attribute	$\underline{\text { Bar 1 }}$	$\underline{\text { Bar 2 }}$	Bar 3
Price	$\$ 1.20$	$\$ 1.50$	$\$ 3.00$
\% Cacao	10%	60%	80%
Brand	Hersheys	Lindt	Ghirardelli

b) What price would Bar 2 have to be to get a 50% market share?

