EMSE 6035: Marketing of Technology

Intro to choice modeling

John Paul Helveston, Ph.D. Assistant Professor Engineering Management & Systems Engineering The George Washington University

Review of Probability Concepts

Random Variable, \tilde{x} : A variable whose value is subject to variation due to chance

Probability Density Function (PDF)

Ex: The probability that the value of \tilde{x} is between *a* and *b* is:

$$\Pr(a \le \tilde{x} \le b) = \int_{a}^{b} f_{\tilde{x}}(x) \, dx$$
PDF

Cumulative Density Function (CDF)

Ex: The probability that the value of \tilde{x} is less than or equal to value *a* is:

$$F_{\tilde{x}}(a) = \Pr(\tilde{x} \le a) = \int_{-\infty}^{a} f_{\tilde{x}}(x) dx$$

Review of Probability Concepts

Multivariable Joint Distribution

Joint distribution of multiple random variables, e.g. \tilde{x} and \tilde{y} in this figure:

Independence

Random variables are "independent" if the value of one doesn't affect the other's probability

In this case, the joint probability distribution is the multiplication of the individual distributions:

 $f_{\tilde{x},\tilde{y}}(x,y) = f_{\tilde{x}}(x)f_{\tilde{y}}(y)$

3 https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Practice Question 1

- a) A random variable, \tilde{x} , has the PDF, $f_{\tilde{x}}(x)$. Write the equation to compute its total probability (hint: think area under the curve!). What is the answer to the equation?
- b) A random variable, \tilde{x} , has a uniform distribution between the values 0 and 1. Draw the probability density function (PDF) and Cumulative Density Function (CDF) of \tilde{x} .
- c) The value of a random variable, \tilde{x} , is determined by rolling one fair, 6-sided dice. Draw the PDF and CDF of \tilde{x} .

<u>Utility</u>: The satisfaction a consumer receives from a product

- Utility is a random variable (so we give it a squiggly line hat): \tilde{u}_j
- Utility has *relative* (not absolute) value
- Utility is unit-less

Example:

<u>Attribute</u>	Phone 1	Phone 2	Phone 3
Price	\$200	\$300	\$400
Battery Life			
Signal Quality			
Utility	\widetilde{u}_1	> ũ ₂	> ũ ₃

Utility can be broken into two parts:

 $\widetilde{u}_j = v_j + \widetilde{\varepsilon}_j$

Things we can observe / measure ("Observed Utility") Things we can't observe / measure ("Error")

We assume that a consumer will choose product j over k if: $\tilde{u}_j > \tilde{u}_k$

Since utility is a random variable, we can only compute the probability that $\tilde{u}_j > \tilde{u}_k$: $P_j = \Pr(\tilde{u}_j > \tilde{u}_k)$

To compute the probability that the consumer will choose product *j* over *k*, we have to integrate over the joint distribution:

$$P_{j} = \Pr(\tilde{u}_{j} > \tilde{u}_{k})$$

$$= \Pr(v_{j} + \tilde{\varepsilon}_{j} > v_{k} + \tilde{\varepsilon}_{k})$$

$$= \Pr(\tilde{\varepsilon}_{k} \leq \tilde{\varepsilon}_{j} + (v_{j} - v_{k}))$$

$$= \int_{\varepsilon_{j}=-\infty}^{\infty} \left[\int_{\varepsilon_{k}=-\infty}^{\tilde{\varepsilon}_{j}+(v_{j}-v_{k})} f_{\tilde{\varepsilon}}(\varepsilon_{j}, \varepsilon_{k}) d\varepsilon_{k} \right] d\varepsilon_{j}$$

$$d\varepsilon_{j}$$

To solve this equation, we need to assume a distribution for $\tilde{\varepsilon}$

Assumptions for $\widetilde{\mathcal{E}}$

ſ	Name	Distribution	Advantage	Disadvantage
ſ	Probit	Normal	Supported by theory	No closed for solution for integral
		$\tilde{\varepsilon} \sim N(0, \Sigma)$		
	ogit	Туре І	Closed form solution	Strong assumptions:
		Extreme	for probabilities!	 Errors must be independent
		Value	\mathcal{V}_i	
0.4 -			$P_j = \frac{e^{-j}}{\sum_{k=1}^J e^i}$	$_{k}$
0.3 -			<i>n</i> -1	
0.2 -			<u>Ex</u> : Probabili	ty of choosing <i>j vs. k</i> :
0.1 -	Normal	Type I Ex	$P_j = \frac{e^{v_j}}{e^{v_j} + e^{v_k}}$, $P_k = \frac{e^{\nu_k}}{e^{\nu_j} + e^{\nu_k}}$
0.0 -	-5	0 5	(we	e'll be using the <u>logit</u> model for this class!)

9

Independence of Irrelevant Alternatives (IIA)

Logit model has the <u>IIA property</u>, which can be problematic when products are close substitutes

Classic Example: "Red Bus" vs. "Blue Bus"

	Тахі	Red Bus
e^{v_j}	2	1
P_j	$\frac{2}{2+1}$	$\frac{1}{2+1}$
	= 0.66	= 0.33

$$\begin{array}{c|cccc} & & & & & & \\ \hline Taxi & Red Bus & Blue Bus \\ \hline \hline P_{j} & 2 & 1 & 1 \\ \hline P_{j} & \frac{2}{2+1+1} & \frac{1}{2+1+1} & \frac{1}{2+1+1} \\ = 0.50 & = 0.25 & = 0.25 \\ \hline \end{array}$$
We expect the probabilities to be: 0.66 0.165 0.165

Practice Question 2

- a) A consumer is making a choice between two bars of chocolate: milk chocolate (m) and dark chocolate (d). Assume that we know the observed utility of each bar to be $v_m = 3$ and $v_d = 4$. Using a logit model, compute the probabilities of choosing each bar: P_m and P_d .
- b) A third bar of chocolate is now added to the choice set. It is the exact same as the milk chocolate bar, but it has a slightly different wrapper (which has no effect on the consumer's utility). Now, $v_{m1} = v_{m2} = 3$, and $v_d = 4$. Based on the probabilities from question 2a, what would we *expect* the probabilities of choosing each bar to be? What probabilities does the logit model produce?

Hint:

 $P_j = \frac{1}{\Sigma^J}$

How do we get v_j ?

We define v_i as a function of observable product attributes, x_i :

$$v_j = f(x_j) = \beta_1 x_{j1} + \beta_2 x_{j2} + \dots$$

Weights that denote the *relative* value of attributes x_{j1} and x_{j2}

Example:

<u>Attribute</u>	Phone 1	Phone 2	Phone 3
Price	\$200	\$300	\$400
Battery Life			Î
Signal Quality	al.		

How do we get v_j ?

We define v_j as a function of observable product attributes, x_j :

$$v_j = f(x_j) = \beta_1 x_{j1} + \beta_2 x_{j2} + \dots$$

Weights that denote the *relative* value of attributes x_{j1} and x_{j2}

Example:

	<u>Attribute</u>	Phone 1	Phone 2	Phone 3
<i>x</i> ₁	Price	\$200	\$300	\$400
x ₂	Battery Life (hours)	20	15	10
x ₃	Signal Quality	100%	80%	60%

 $\begin{aligned} x_1 & x_2 & x_3 \\ \text{Phone 1:} & \nu_1 &= \beta_1(200) + \beta_2(20) + \beta_3(100) \\ \text{Phone 2:} & \nu_2 &= \beta_1(300) + \beta_2(15) + \beta_3(80) \\ \text{Phone 3:} & \nu_3 &= \beta_1(400) + \beta_2(10) + \beta_3(60) \end{aligned}$

Example: Let's say $\beta_1 = -0.01$, $\beta_2 = 0.1$, $\beta_3 = 0.05$ Phone 1: $v_1 = -0.01(200) + 0.01(20) + 0.02(100) = 5$ Phone 2: $v_1 = -0.01(300) + 0.01(15) + 0.02(80) = 2.5$ Phone 3: $v_1 = -0.01(400) + 0.01(10) + 0.02(60) = 0$

Continuous vs. Discrete Attributes (x_j)

Ò

Continuous attributes

	<u>Attribute</u>	<u>Phone 1</u>	Phone 2	<u>Phone 3</u>
<i>x</i> ₁	Price	\$200	\$300	\$400
<i>x</i> ₂	Battery Life (hours)	20	15	10
<i>x</i> ₃	Signal Quality	100%	80%	60%

Discrete (categorical) attributes

<u>Attribute</u>	<u>Phone 1</u>	Phone 2	Phone 3
Price	\$200	\$300	\$400
Battery Life (hours)	20	15	10
Signal Quality	High	Med	Low

Phone 1:
$$v_1 = \beta_1 x_1 + \beta_2 x_2 + \beta_3 \delta^{\text{MED}} + \beta_4 \delta^{\text{HIGH}}$$

 $\delta^{\text{MED}} = 1 \text{ or } 0$
 $\Delta v_1 \qquad \beta_4 \qquad \beta_3 \qquad \beta_3 \qquad \beta_4$
Low Med High Signal quality

14

Practice Question 3

<u>Attribute</u>	<u>Bar 1</u>	<u>Bar 2</u>	<u>Bar 3</u>	
Price	\$1.20	\$1.50	\$3.00	
% Cacao	10%	60%	80%	

- a) Write out a model for the observed utility of each chocolate bar in the above set.
- b) If the coefficient for the *price* attribute was -0.1 and the coefficient for % Cacao attribute was 0.1, what is the difference in the observed utility between bars 3 and 1?
- c) With the addition of the *brand* attribute, repeat part *a*.

Extra Slides

Let's say our utility function is:

 $u_j = \beta_1 x_j^{price} + \beta_2 x_j^{cacao} + \beta_3 \delta_j^{hersheys} + \beta_4 \delta_j^{lindt} + \varepsilon_j$

And we estimate the following coefficients:

Parameter	Coef.
eta_1	-0.1
β_2	0.1
β_3	-2.0
eta_4	-0.1

a) What are the expected probabilities of choosing each bar using a logit model?

<u>Attribute</u>	<u>Bar 1</u>	<u>Bar 2</u>	<u>Bar 3</u>
Price	\$1.20	\$1.50	\$3.00
% Cacao	10%	60%	80%
Brand	Hersheys	Lindt	Ghirardelli

b) What price would Bar 2 have to be to get a 50% market share?