EMSE 6035: Marketing of Technology

Intro to Maximum Likelihood Estimation & Optimization

John Paul Helveston, Ph.D. Assistant Professor Engineering Management & Systems Engineering The George Washington University

Background: Random Utility Model

Utility can be broken into two parts:

We define v_i as a function of observable product attributes, x_i :

$$v_{j} = f(x_{j}) = \beta_{1}x_{j1} + \beta_{2}x_{j2} + \dots$$

Weights that denote the *relative*
value of attributes x_{j1} and x_{j2}

Estimate model coefficients, β_1 , β_2 , ..., by maximizing the likelihood function

The likelihood function is a function of the parameters of a statistical model, given observed data

Probability

$$\Pr(\tilde{x} = x \mid \boldsymbol{\theta})$$

Example:

 \tilde{x} follows a normal distribution with two parameters (θ) :

- Mean ($\mu = 0$)
- Standard deviation ($\sigma = 1$)

Likelihood

 $\mathcal{L}(\boldsymbol{\theta}|\mathbf{x})$

Example:

We assume \tilde{x} follows a normal distribution We have the following observations

0.2 -0.5 -1 0.2	0.1 1.6	0.6 0.5	-1.9 -0.4
-----------------	---------	---------	-----------

What is the likelihood that the parameters are:

- Mean ($\mu = 0$)
- Standard deviation ($\sigma = 1$)

 $f_{\tilde{x}}(\mathbf{x}) =$

0.39 0.35 0.24 0.39 0.40 0.11 0.33 0.35 0.07 0.37

 $\mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) f_{\tilde{x}}(x_2) \dots f_{\tilde{x}}(x_n) = 1.63\text{e-}6$

Take the log of the likelihood to convert multiplication to addition

 $\mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) f_{\tilde{x}}(x_2) \dots f_{\tilde{x}}(x_n) = 1.63\text{e-}6$

$$\log \mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) + f_{\tilde{x}}(x_2) + \dots + f_{\tilde{x}}(x_n) = 3$$

Maximum likelihood estimation is about finding the parameters that produce the highest log-likelihood

Observations

0.2	-0.5	-1	0.2	0.1	1.6	0.6	0.5	-1.9	-0.4

μ	σ		Probability of $\tilde{x} = x$							$\log \mathcal{L}(\boldsymbol{\theta} \mathbf{x})$		
-1	1	0.19	0.35	0.40	0.19	0.22	0.01	0.11	0.13	0.27	0.33	2.2
0	1	0.39	0.35	0.24	0.39	0.40	0.11	0.33	0.35	0.07	0.37	3
1	2	0.18	0.15	0.12	0.18	0.18	0.19	0.20	0.19	0.07	0.16	1.62

Practice Question 1

<u>Observations</u>: Height of students (inches)

65	69	66	67	68	72	68	69	63	70
----	----	----	----	----	----	----	----	----	----

a. Let's say we know that the height of students, \tilde{x} , in a classroom follows a normal distribution. A professor obtains the above height measurements students in her classroom. What is the log-likelihood that $\tilde{x} \sim N(68, 4)$? In other words, compute $\log \mathcal{L}(\mu = 68, \sigma = 4|\mathbf{x})$.

<u>Hints</u>:

- 1. The log-likelihood is computed by: $\mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) + f_{\tilde{x}}(x_2) + \dots + f_{\tilde{x}}(x_n)$
- 2. The *dnorm(x, mean, sd)* function in *R* returns the value of $f_{\tilde{x}}(x)$ for a normal distribution with a given mean (*mean*) and standard deviation (*sd*).
- b. Compute the log-likelihood function using the same standard deviation ($\sigma = 4$) but with the following different values for the mean, μ : 66, 67, 68, 69, 70. How do the results compare? Which value for μ produces the highest log-likelihood?

Use the data we observe, \mathbf{x} , to estimate the parameters, $\mathbf{\theta}$, of an assumed model

maximize
$$\mathcal{L}(\boldsymbol{\theta}|\mathbf{x}) = f_{\tilde{x}}(x_1) + f_{\tilde{x}}(x_2) + \dots + f_{\tilde{x}}(x_n) = \sum_{i=1}^n f_{\tilde{x}}(x_i|\boldsymbol{\theta})$$

with respect to $\boldsymbol{\theta}$
Solving this is known as

"Maximum Likelihood Estimation"

This is an optimization problem!

Optimization: Find the value, x, that maximizes the function f(x)

Example: Find what price, p, will maximize profit , π , for the following model:

Profit: $\pi(p) = q(p - c)$ Demand: q = 10 - pCost: c

 $\begin{array}{ll} \text{maximize} & \pi(p) \\ \text{with respect to } p \\ \text{subject to } p \geq 0 \end{array}$

$$\begin{aligned} (p) &= q(p-c) \\ &= (10-p)(p-c) \\ &= -p^2 + (10+c)p - 10c \end{aligned} \\ \partial \pi \\ &= -2m + 10 + c = 0 \end{aligned}$$

$$\frac{\partial n}{\partial p} = -2p + 10 + c = 0$$

Solve for *p*:

$$p^* = \frac{10 + c}{2}$$

If $c = 1$, $p^* = \frac{11}{2} = 5.5$

Optimality Conditions

Optimality conditions

First order necessary condition x^* is a "stationary point" when

$$\frac{df(x^*)}{dx} = 0$$

Second order sufficiency condition x^* is a local *maximum* when

$$\frac{d^2 f(x^*)}{dx^2} < 0$$

 x^* is a local *minimum* when

$$\frac{d^2 f(x^*)}{dx^2} > 0$$

Optimality conditions

f(x)

First order necessary condition

 x^* is a "stationary point" when

$$\frac{df(x^*)}{dx} = 0$$

Second order sufficiency condition x^* is an *inflection point* when

$$\frac{d^2 f(x^*)}{dx^2} = 0$$

Optimality conditions for local **maximum**

Number of dimensions	First order condition	Second order condition	Example
One	$\frac{df(x^*)}{dx} = 0$	$\frac{d^2 f(x^*)}{dx^2} < 0$	
	"Gradient" $\nabla f(x_1, x_2, \dots x_n)$	"Hessian" $\nabla^2 f(x_1, x_2, \dots x_n)$	0
Multiple	$= \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$ $= [0, 0, \dots, 0]$	$= \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$ Must be "negative definite"	

12

Optimality conditions for local **minimum**

Number of dimensions	First order condition	Second order condition	Example
One	$\frac{df(x^*)}{dx} = 0$	$\frac{d^2 f(x^*)}{dx^2} > 0$	
	"Gradient" $\nabla f(x_1, x_2, \dots x_n)$	"Hessian" $\nabla^2 f(x_1, x_2, \dots x_n)$	
Multiple	$= \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$ $= [0, 0, \dots, 0]$	$= \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$ Must be "positive definite"	$\begin{bmatrix} 5 \\ 0 \\ 2 \\ x_1 \\ -2 \\ -2 \\ -2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ x_2 \\ x_2 \end{bmatrix}$

13

Optimization Convention: "Negative Null Form"

Optimization Approaches: 1. Analytic 2. Algorithmic

Analytical Optimization

Ex: Find what value for x will maximize the function $f(x) = -x^2 + 6x$

minimize
$$f(x) = x^2 - 6x$$

with respect to x

First order necessary condition x^* is a "stationary point" when $\frac{df(x^*)}{dx} = 0$

$$\frac{df}{dx} = 2x - 6 = 0 \longrightarrow x^* = 3$$

Second order sufficiency condition x^* is a local maximum / minimum when

$$\frac{d^2f(x^*)}{dx^2} < 0 \qquad \frac{d^2f(x^*)}{dx^2} >$$

 $\frac{d^2f}{dx^2} = 2 \longrightarrow x^* \text{is a local } \underline{\text{minimum}}$

Optimization Algorithms

Gradient Descent Method:

- 1. Choose a starting point, x_0
- 2. At that point, compute the gradient, $\nabla f(x_0)$
- 3. Compute the next point, with a step size γ :

$$x_{n+1} = x_n - \gamma \nabla f(x_n)$$

*Stop when v/
$$(x_n) < \delta^2$$

or
*Stop when $(x_{n+1} - x_n) < \delta$

Convex & Concave Functions

Convex

Concave

When minimizing a <u>convex</u> function, any *local* minimum is a *global* minimum When maximizing a <u>concave</u> function, any *local* maximum is a *global* maximum

Practice Question 2

Consider the following function: $f(x) = x^2 - 6x$

The gradient is: $\nabla f(x) = 2x - 6$

Using the starting point x = 1 and the step size $\gamma = 0.3$, apply the gradient descent method to compute the next **three** points in the search algorithm.

<u>Hints</u>:

1. Remember the gradient descent method: $x_{n+1} = x_n - \gamma \nabla f(x_n)$

Practice Question 3

Consider the following function: $f(\underline{x}) = x_1^2 + 4x_2^2$

The gradient is: $\nabla f(\underline{\mathbf{x}}) = \begin{bmatrix} 2x_1 \\ 8x_2 \end{bmatrix}$ Using the starting point $\underline{x}_0 = [1, 1]$ and the step size $\gamma = 0.15$, apply the gradient descent method to compute the next **three** points in the search algorithm.

Hints:

 Remember the gradient descent method: x_{n+1} = x_n − γ∇f(x_n)
In *R*, use the c() function to create a

vector.

Estimating Utility Model Coefficients Using Maximum Likelihood Estimation

$$\begin{split} \tilde{u}_j &= v_j + \tilde{\varepsilon}_j \\ &= \beta_1 x_{j1} + \beta_2 x_{j2} + \dots + \tilde{\varepsilon}_j \\ &= \mathbf{\beta}' \mathbf{x}_j + \tilde{\varepsilon}_j \end{split}$$

Estimate $\boldsymbol{\beta} = [\beta_1, \beta_2, \dots, \beta_n]$ by maximizing the likelihood function

minimize
$$-log\mathcal{L} = -\sum_{j=1}^{J} P_j (\boldsymbol{\beta} | \mathbf{x})^{y_j}$$

with respect to $\boldsymbol{\beta}$

 $y_j = 1$ if alternative j was chosen $y_j = 0$ if alternative j was not chosen

For logit model:

$$P_j = \frac{e^{v_j}}{\sum_{k=1}^J e^{v_k}} = \frac{e^{\beta' \mathbf{x}_j}}{\sum_{k=1}^J e^{\beta' \mathbf{x}_k}}$$