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Background: Random Utility Model

Utility can be broken into two parts:

!𝑢! = 𝑣! + ̃𝜀!

Things we can
observe / measure

(“Observed Utility”)

Things we can’t 
observe / measure

(“Error”)

We define 𝑣! as a function of observable product attributes, 𝑥!:

𝑣! = 𝑓 𝑥! = 𝛽"𝑥!" + 𝛽#𝑥!#+…

Weights that denote the relative
value of attributes 𝑥!" and 𝑥!#

Estimate model coefficients, 
𝛽! , 𝛽" , … , by maximizing the 

likelihood function



Probability Likelihood
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The likelihood function is a function of the parameters 
of a statistical model, given observed data
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Example:
+𝑥 follows a normal distribution 
with two parameters (𝛉) :
• Mean (𝜇 = 0)
• Standard deviation (𝜎 = 1)

= 𝑓$% 0

≅ 0.4

ℒ 𝛉|𝐱
Example:
We	assume	 +𝑥 follows a normal distribution
We	have	the	following	observations

What	is	the	likelihood	that	the	parameters are:
• Mean (𝜇 = 0)
• Standard deviation (𝜎 = 1)

0.2 -0.5 -1 0.2 0.1 1.6 0.6 0.5 -1.9 -0.4

ℒ 𝛉|𝐱 = 𝑓#$(𝑥!) 𝑓#$(𝑥")…𝑓#$ 𝑥% = 1.63e-6

0.39 0.35 0.24 0.39 0.40 0.11 0.33 0.35 0.07 0.37

𝑓#$ 𝐱 =
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Take the log of the likelihood to 
convert multiplication to addition

ℒ 𝛉|𝐱 = 𝑓#$(𝑥!) 𝑓#$(𝑥")…𝑓#$ 𝑥% = 1.63e-6

0.39 0.35 0.24 0.39 0.40 0.11 0.33 0.35 0.07 0.37

log ℒ 𝛉|𝐱 = 𝑓#$ 𝑥! + 𝑓#$(𝑥")+…+𝑓#$ 𝑥% = 3



𝜇 𝝈 Probability of +𝑥 = 𝑥 log ℒ 𝛉|𝐱
-1 1 2.2

0 1 3

1 2 1.62
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Maximum likelihood estimation is about finding the 
parameters that produce the highest log-likelihood

Observations

0.2 -0.5 -1 0.2 0.1 1.6 0.6 0.5 -1.9 -0.4

0.19 0.35 0.40 0.19 0.22 0.01 0.11 0.13 0.27 0.33

0.39 0.35 0.24 0.39 0.40 0.11 0.33 0.35 0.07 0.37

0.18 0.15 0.12 0.18 0.18 0.19 0.20 0.19 0.07 0.16



Practice Question 1

a. Let’s say we know that the height of students, '𝑥, in a classroom follows a normal distribution. 
A professor obtains the above height measurements students in her classroom. What is the 
log-likelihood that '𝑥 ~ 𝑁(68, 4)? In other words, compute logℒ 𝜇 = 68, 𝜎 = 4 𝐱 . 

b. Compute the log-likelihood function using the same standard deviation (𝜎 = 4) but with the 
following different values for the mean, 𝜇: 66, 67, 68, 69, 70. How do the results compare? 
Which value for 𝜇 produces the highest log-likelihood?

65 69 66 67 68 72 68 69 63 70

Observations:	Height	of	students	(inches)

Hints:  
1.
2. The dnorm(x, mean, sd) function in R returns the value of 𝑓#$(𝑥) for a 

normal distribution with a given mean (mean) and standard deviation (sd).

The log-likelihood is computed by: ℒ 𝛉|𝐱 = 𝑓#$(𝑥!)+𝑓#$(𝑥")+…+𝑓#$ 𝑥%



Use the data we observe, 𝐱, to estimate 
the parameters, 𝛉, of an assumed model
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with respect to 𝛉

ℒ 𝛉 𝐱 = 𝑓+N 𝑥O +𝑓+N 𝑥P +…+𝑓+N 𝑥Q =)
RSO

Q

𝑓+N(𝑥R|𝛉)maximize

Solving this is known as 
“Maximum Likelihood Estimation”

This is an optimization problem!



Optimization: 
Find the value, 𝑥, that maximizes the function 𝑓(𝑥)
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Example: Find what price, 𝑝, 
will maximize profit , 𝜋, 
for the following model:

Profit: 𝜋(𝑝) = 𝑞(𝑝 − 𝑐)
Demand: 𝑞 = 10 − 𝑝
Cost: 𝑐

with respect to 𝑝
𝜋(𝑝)maximize

subject to 𝑝 ≥ 0

𝜋 𝑝 = 𝑞 𝑝 − 𝑐
= (10 − 𝑝)(𝑝 − 𝑐)
= −𝑝P + 10 + 𝑐 𝑝 − 10𝑐
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Optimality Conditions



Optimality conditions
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𝑥

𝑓(𝑥)

𝑑𝑓(𝑥∗)
𝑑𝑥

= 0

First	order	necessary	condition
𝑥∗ is a “stationary point” when

Local maximum

Local minimum

𝑑P𝑓(𝑥∗)
𝑑𝑥P

< 0

Second	order	sufficiency	condition
𝑥∗ is a local maximum when

𝑥∗ is a local minimum when

𝑑P𝑓(𝑥∗)
𝑑𝑥P

> 0

Global maximum



𝑥

𝑓(𝑥)

Optimality conditions
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𝑑𝑓(𝑥∗)
𝑑𝑥

= 0

First	order	necessary	condition
𝑥∗ is a “stationary point” when

Inflection point

𝑑P𝑓(𝑥∗)
𝑑𝑥P

= 0

Second	order	sufficiency	condition
𝑥∗ is an inflection point when



Number of 
dimensions First order condition Second order condition Example

One
𝑑𝑓(𝑥∗)
𝑑𝑥

= 0 𝑑"𝑓(𝑥∗)
𝑑𝑥"

< 0

Multiple

“Gradient”
∇𝑓 𝑥!, 𝑥", … 𝑥%

“Hessian”
∇"𝑓 𝑥!, 𝑥", … 𝑥%

=
𝜕𝑓
𝜕𝑥!

,
𝜕𝑓
𝜕𝑥"

, … ,
𝜕𝑓
𝜕𝑥%

= 0,0, … , 0

=

'!(
'$"!

⋯ '!(
'$#'$"

⋮ ⋱ ⋮
'!(

'$"'$#
⋯ '!(

'$#!

Must be “negative definite” 𝑥" 𝑥#

Optimality conditions for local maximum
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Number of 
dimensions First order condition Second order condition Example

One
𝑑𝑓(𝑥∗)
𝑑𝑥

= 0 𝑑"𝑓(𝑥∗)
𝑑𝑥"

> 0

Multiple

“Gradient”
∇𝑓 𝑥!, 𝑥", … 𝑥%

“Hessian”
∇"𝑓 𝑥!, 𝑥", … 𝑥%

=
𝜕𝑓
𝜕𝑥!

,
𝜕𝑓
𝜕𝑥"

, … ,
𝜕𝑓
𝜕𝑥%

= 0,0, … , 0

=

'!(
'$"!

⋯ '!(
'$#'$"

⋮ ⋱ ⋮
'!(

'$"'$#
⋯ '!(

'$#!

Must be “positive definite”

Optimality conditions for local minimum
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𝑥" 𝑥#



Optimization Convention: 
“Negative Null Form”
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with respect to 𝑥
𝑓(𝑥)maximize

subject to…
with respect to 𝑥

−𝑓(𝑥)minimize

subject to…



Optimization Approaches:

1. Analytic
2. Algorithmic



Analytical Optimization
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Ex: Find what value for 𝑥 will maximize 
the function 𝑓 𝑥 = −𝑥P + 6𝑥

with respect to 𝑥
𝑓 𝑥 = 𝑥P − 6𝑥minimize

𝑑𝑓
𝑑𝑥

= 2𝑥 − 6 = 0

𝑑𝑓(𝑥∗)
𝑑𝑥

= 0

First	order	necessary	condition
𝑥∗ is a “stationary point” when

𝑥∗ = 3

𝑑P𝑓(𝑥∗)
𝑑𝑥P

< 0

Second	order	sufficiency	condition
𝑥∗ is a local maximum / minimum when

𝑑P𝑓(𝑥∗)
𝑑𝑥P

> 0

𝑑P𝑓
𝑑𝑥P

= 2 𝑥∗is a local minimum0

50

100

150

−10 0 10



Optimization Algorithms
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𝑥QVO = 𝑥Q − γ∇𝑓(𝑥 Q)

Gradient Descent Method:
1. Choose a starting point, 𝑥W
2. At that point, compute the 

gradient, ∇𝑓(𝑥W)
3. Compute the next point, with 

a step size γ : 

*Stop when ∇𝑓 𝑥Q < 𝛿
or

*Stop when (𝑥QVO − 𝑥Q) < 𝛿𝑥

𝑓(𝑥)

𝑥'

𝑥"
𝑥# 𝑥(

Very small 
number



Convex Concave
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Convex & Concave Functions

When minimizing a convex function, 
any local minimum is a global minimum

When maximizing a concave function, 
any local maximum is a global maximum



Practice Question 2

Consider the following function:
𝑓 𝑥 = 𝑥P − 6𝑥

The gradient is:
∇𝑓 𝑥 = 2𝑥 − 6

Using the starting point 𝑥 =1 and the step size 
γ = 0.3, apply the gradient descent method to 
compute the next three points in the search 
algorithm. 

Hints: 

1. Remember the gradient descent method: 
𝑥QVO = 𝑥Q − γ∇𝑓 𝑥 Q



Practice Question 3

Consider the following function:
𝑓 x = 𝑥OP + 4𝑥PP

The gradient is:

∇𝑓 x = 2𝑥O
8𝑥P

Using the starting point xW =[1, 1] and the step 
size γ = 0.15, apply the gradient descent 
method to compute the next three points in 
the search algorithm. 

Hints: 

1. Remember the gradient descent method: 
𝑥QVO = 𝑥Q − γ∇𝑓 𝑥 Q

2. In R, use the c() function to create a 
vector.



= 𝛽"𝑥!" + 𝛽#𝑥!# +… + ̃𝜀!
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Estimating Utility Model Coefficients Using 
Maximum Likelihood Estimation

!𝑢! = 𝑣! + ̃𝜀!

Estimate 𝛃 = 𝛽O, 𝛽P, … , 𝛽Q
by maximizing the likelihood function

with respect to 𝛃

−𝑙𝑜𝑔ℒ = −)
!SO

X

𝑃! 𝛃 𝐱 Y!minimize

𝑃! =
𝑒]!

∑^_"
` 𝑒]"

For logit model:

= 𝛃a𝐱! + ̃𝜀! 𝑦) = 1 if alternative 𝑗 was chosen 
𝑦) = 0 if alternative 𝑗 was not chosen 

=
𝑒𝛃

#𝐱!

∑^_"
` 𝑒𝛃#𝐱"


