

m EMSE 6035: Marketing Analytics for Design Decisions

Lohn Paul Helveston

August 31, 2022

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions
- **BREAK:** Teaming
- 4. Getting started with R & RStudio

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions
- **BREAK:** Teaming
- 4. Getting started with R & RStudio

Meet your instructor!

John Paul Helveston, Ph.D.

Assistant Professor, Engineering Management & Systems Engineering

- 2016-2018 Postdoc at Institute for Sustainable Energy, Boston University
- 2016 PhD in Engineering & Public Policy at Carnegie Mellon University
- 2015 MS in Engineering & Public Policy at Carnegie Mellon University
- 2010 BS in Engineering Science & Mechanics at Virginia Tech
- Website: www.jhelvy.com

Course website: https://madd.seas.gwu.edu/2022-Fall/

Course slack: https://emse-madd-f22.slack.com

R & RStudio: Course Software Page

Why **Q**?

Learning Objectives

After this class, you will know how to...

- ...work with data in ${f R}$
- ...design effective surveys to get rich data
- ...analyze consumer choice data to model consumer preferences
- ...design effective charts to communicate insights

Course prerequisites

This course requires prior exposure to:

- Probability theory
- Multivariable calculus
- Linear algebra
- Regression

Not sure?

Take this self assessment

Reflections (27% of grade)

Do some readings, recorded lectures, practice problems

Write a short reflection

- **Every week (9 total)**
- **C** Due 11:59pm Tues. before class
- Graded for completion (looking for engagement)

Quizzes (8% of grade)

At the start of class every other week-ish, unscheduled. Make ups only for excused absences (i.e. don't be late).

苗 5 total, lowest dropped

C ~5 - 10 minutes

Why quiz at all? The "retrieval effect" - basically, you have to *practice* remembering things, otherwise your brain won't remember them (see the book "Make It Stick: The Science of Successful Learning")

Exam (10% of grade)

Take home exam, 2nd to last week of class

We'll go over exam solutions on last day of class

Semester Project (46% of grade)

Teams of 3-4 students

Key deliverables:

Goals:

- Assess market viability of a new technology or design
- Recommend best design choices for target market or application

ltem	Weight	Due
Proposal	6 %	9/26
Survey Plan	4 %	10/05
Pilot Survey	4 %	10/15
Pilot Analysis	8 %	11/07
Final Survey	5 %	11/21
Final Analysis Report	14 %	12/13
Final Presentation	8 %	12/15

Grades Reflections Exam Quizzes Project 25 100 0 50 75 Percent of final grade

Grades

ltem	Weight	Notes
Reflections	27 %	Weekly assignment (9 x 3%)
Quizzes	12 %	5 quizzes, lowest dropped
Project Proposal	7 %	Teams of 3-4 students
Survey Plan	4 %	
Pilot Survey	4 %	
Pilot Analysis	9 %	
Final Survey	5 %	
Final Analysis Report	14 %	
Final Presentation	8 %	
Final Exam	10 %	Take home exam

Course policies

- BE NICE
- BE HONEST
- DON'T CHEAT

Copying is good, stealing is bad

"Plagiarism is trying to pass someone else's work off as your own. Copying is about reverse-engineering."

-- Austin Kleon, from Steal Like An Artist

Late submissions

- 5 late days use them anytime, no questions asked
- No more than **2** late days on any one assignment
- Contact me for special cases

How to succeed in this class

- Participate during class!
- Start assignments early and **read carefully**!
- Get sleep and take breaks often!
- Ask for help!

Getting Help

Use **Slack** to ask questions.

Schedule a meeting w/Prof. Helveston:

- Mondays from 8:00-5:00pm
- Tuesday from 1:00-5:00pm
- Thursdays from 12:00-5:00pm

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions
- **BREAK:** Teaming
- 4. Getting started with R & RStudio

We want to answers to questions like...

- Higher prices decrease demand, but by how much?
- How much more is a consumer willing to pay for increased performance in X?
- How will my product compete against competitors in the market?

Answers depend on knowing what people want

Directly asking people what they want isn't always helpful

(People want everything)

Which feature do you care more about?

SAMSUNG

Ð

LG

Conjoint approach: Use consumer choice data to model preferences

<u>Attribute</u>	Phone 1	Phone 2	<u>Phone 3</u>
Price	\$400	\$450	\$350
Brand	Ć	LG	SAMSUNG
Battery Life			
Signal Quality			
N chosen:	350	250	400

Use random utility framework to predict probability of choosing phone *j*

1.
$$u_j = eta_1 \mathrm{price}_j + eta_2 \mathrm{brand}_j + eta_3 \mathrm{battery}_j + eta_4 \mathrm{signal}_j + arepsilon_j$$

2. Assume $arepsilon_j \sim {
m iid}$ extreme value

3. Probability of choosing phone j:
$$P_j = rac{e^{eta' x_j}}{\sum_k^J e^{eta' x_k}}$$

4. Estimate β_1 , β_2 , β_3 , β_4 by minimizing $-L = -\sum_n^N \sum_j^J y_{nj} \ln P_{nj}$

24 / 48

Willingness to Pay

$$u_j = eta' x_j + lpha p_j + arepsilon_j$$
 $\omega = rac{eta}{-lpha}$

"Respondents on average are willing to pay \$XX to improve battery life by XX%"

Make predictions

Example: *Pocket Charge* A Flexible, Portable Solar Charger

Product Diagram

Attribute Units

Price-USD Weight-Kg Power Output - Watts Durability - Months Portability - LxWxH

Decision Variable Units

Power Density – W/Kg Degradation Rate – Hours Packing Design – Cm³

Example survey choice question

Ch	oice 1	Ch	oice 2	Cho	oice 3
Price (USD)	200	Price (USD)	50	Price (USD)	100
Weight (lbs)	3	Weight (Ibs)	0.5	Weight (lbs)	0.5
Power Output (Watts)	16 (One cellphone in 2 hours)	Power Output (Watts)	16 (One cellphone in 2 hours)	Power Output (Watts)	16 (One cellphone in 2 hours)
Years of Manufacturers Warranty	1	Years of Manufacturers Warranty	1	Years of Manufacturers Warranty	3
Portability	Compacted size of a thumb drive	Portability	Compacted size of a deck of cards	Portability	Compacted size of a box fan
	0		0		0

28 / 48

29 / 48

Your project starts now! <u>View project Ideas</u>

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions
- BREAK: Teaming
- 4. Getting started with R & RStudio

Introduce yourself

- Preferred name
- Degree program
- Prior experience
- What do you hope to gain from this class?
- Project interests?

Break: Teaming

- 1. Course orientation
- 2. Intro to conjoint analysis
- 3. Introductions
- **BREAK:** Teaming
- 4. Getting started with R & RStudio

RStudio Orientation

- Know the boxes
- Customize the layout
- Customize the look
- Extra themes

Open intro-to-R.R file and follow along

View prior code in history pane

Use "up" arrow see previous code

Staying organized

1) Save your code in .R files

File > New File > R Script

2) Keep work in R Project files

File > New Project...

Your turn

A. Practice getting organized

- 1. Open RStudio and create a new R project called week1.
- 2. Create a new R script and save it as practice.R.
- 3. Open the **practice**. **R** file and write your answers to these questions in it.

B. Creating & working with objects

1). Create objects to store the values in this table:

City	Area (sq. mi.)	Population (thousands)
San Francisco, CA	47	884
Chicago, IL	228	2,716
Washington, DC	61	694

2) Using the objects you created, answer the following questions:

- Which city has the highest density?
- How many *more* people would need to live in DC for it to have the same population density as San Francisco?

>15,000 packages on the CRAN

Installing packages

install.packages("packagename")

(The package name **must** be in quotes)

install.packages("packagename") # This works
install.packages(packagename) # This doesn't work

You only need to install a package once!

Loading packages

library(packagename): Loads all the functions in a package

(The package name *doesn't* need to be in quotes)

library("packagename") # This works
library(packagename) # This also works

You need to *load* the package every time you use it!

Installing vs. Loading

INSTALL ONCE:

install.packages("light")

USE MANY TIMES:

Example: **wikifacts**

Install the Wikifacts package, by Keith McNulty:

install.packages("wikifacts")

Load the package:

library(wikifacts) # Load the library

Use one of the package functions

wiki_randomfact()

#> [1] "Did you know that on October 29 in 1986 — British prime minister Margaret Thatcher officially opened the M25, one of Britain's busiest motorways. (Courtesy of Wikipedia)"

Example: wikifacts

Now, restart your RStudio session:

Session -> Restart R

Try using the package function again:

wiki_randomfact()

#> Error in wiki_randomfact(): could not find function "wiki_randomfact"

Using only *some* package functions

You don't always have to load the whole library.

Functions can be accessed with this pattern:

packagename::functionname()

wikifacts::wiki_randomfact()

#> [1] "Did you know that in response to the Hong Kong government refusing to close its border with mainland China to contain COVID-19, Winnie Yu organized a labour strike among hospital workers in February 2020? (Courtesy of Wikipedia)"

If you haven't yet, install <u>these packages</u>

Back intro-to-R.R for the rest of class!