

Week 10: DOE & Power Analysis

fit EMSE 6035: Marketing Analytics for Design Decisions

Sohn Paul Helveston

November 02, 2022

Before we start, re-install {cbcTools}

remotes::install_github("jhelvy/cbcTools")

Week 10: DOE & Power Analysis

1. Design of Experiment

2. Design Efficiency

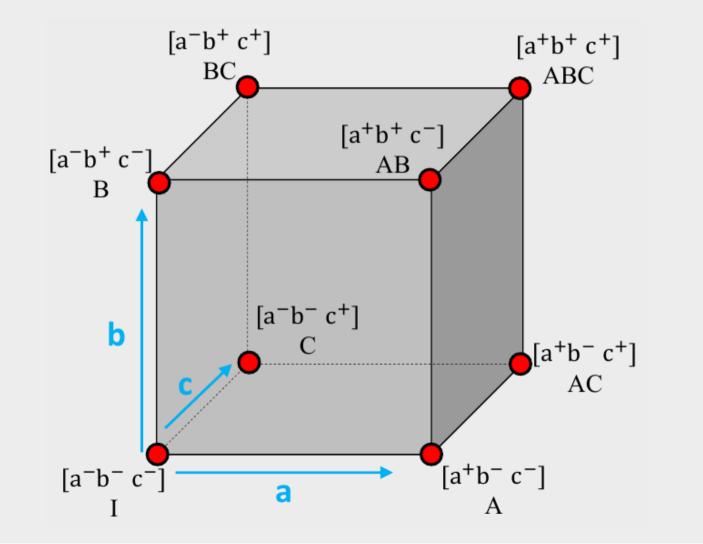
3. Power Analysis

Week 10: DOE & Power Analysis

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

Main & Interaction Effects

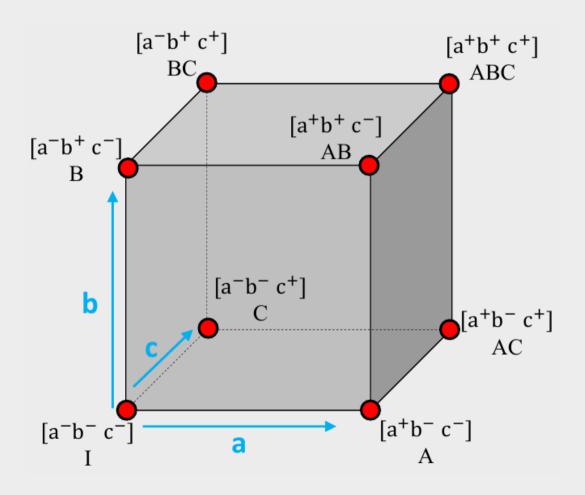
Full design space for 3 effects: A, B, C



6/34

Full design space for 3 effects: A, B, C

- Example: Cars A: Electric? (Yes+ or No-) B: Warranty? (Yes+ or No-)
- C: Ford? (Yes+ or No-)

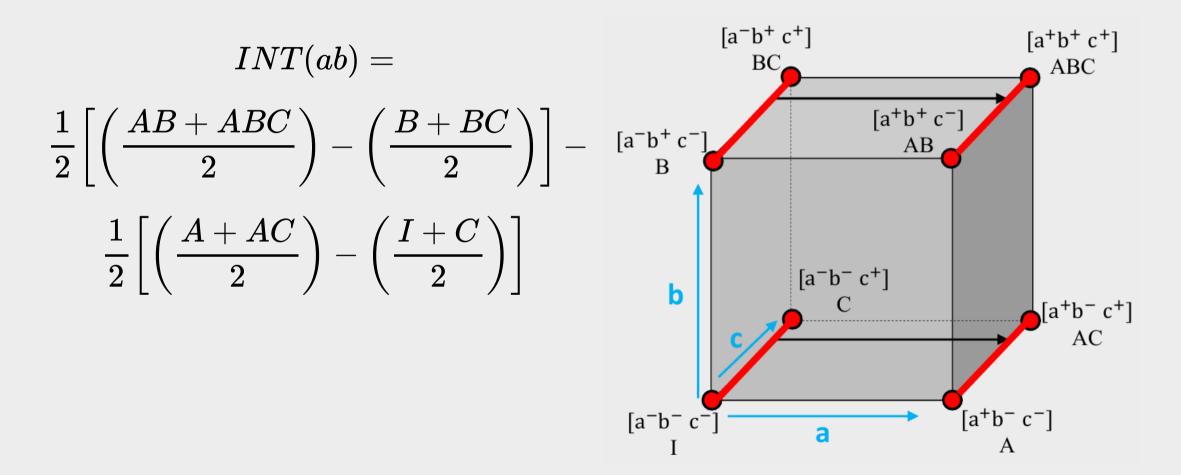


Main Effects

$$ME(a) = \begin{pmatrix} A + AB + AC + ABC \\ 4 \end{pmatrix} - \begin{pmatrix} I + B + C + BC \\ 4 \end{pmatrix}$$
(A: Electric? Yes+ or No-)
$$(A: Electric? Yes+ or No-)$$

8/34

Interaction Effects



Example: Wine Pairings

meat wine

fish white fish red

steak white

steak red

Main Effects

meat: Fish or Steak?
 wine: Red or White?

Example: Wine Pairings

meat wine

fish white fish red steak white

steak red

Main Effects

meat: Fish or Steak?
 wine: Red or White?

Interaction Effects

meat*wine: Red or White wine with Steak?
 meat*wine: Red or White wine with Fish?

Open interactions.Rmd

Fractional vs Full Factorial Designs

Full Factorial Design

Example: Cars

- A: Electric? (Yes+ or No-)
- B: Warranty? (Yes+ or No-)
- C: Ford? (Yes+ or No-)

```
library(cbcTools)
```

```
profiles <- cbc_profiles(
      electric = c(1, 0),
      warranty = c(1, 0),
      ford = c(1, 0)</pre>
```

```
profiles
```

#>		profileID	electric	warranty	ford
#>	1	1	1	1	1
#>	2	2	0	1	1
#>	3	3	1	0	1
#>	4	4	0	0	1
#>	5	5	1	1	0
#>	6	6	0	1	0
#>	7	7	1	0	0
#>	8	8	0	0	0

Full Factorial Design

Balanced?

All levels appear an equal number of times.

Orthogonal?

All pairs of levels appear together an equal number of times.

library(cbcTools)

```
profiles <- cbc_profiles(
     electric = c(1, 0),
     warranty = c(1, 0),
     ford = c(1, 0)</pre>
```

profiles

#>		profileID	electric	warranty	ford
#>	1	1	1	1	1
#>	2	2	0	1	1
#>	3	3	1	0	1
#>	4	4	0	0	1
#>	5	5	1	1	0
#>	6	6	0	1	0
#>	7	7	1	0	0
#>	8	8	0	0	0

Fractional Factorial Design

Balanced?

All levels appear an equal number of times.

Orthogonal?

All pairs of levels appear together an equal number of times.

profiles[c(1, 3, 5, 6),]

#>		profileID	electric	warranty	ford
#>	1	1	1	1	1
#>	3	3	1	0	1
#>	5	5	1	1	0
#>	6	6	0	1	0

Comparing Full and Fractional Factorial Designs Open balance-orthogonality.Rmd

Practice Question 1

Consider the following experiment design

а	b	С	Effect
+	-	-	А
-	+	-	В
+	_	+	AC
_	+	+	BC

a) Is the design balanced? Is is orthogonal?

b) Write out the equation to compute the main effect for a, b, and c.

c) Are any main effects confounded? If so, what are they confounded with?

Week 10: DOE & Power Analysis

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

A simple conjoint experiment about cars

Attribute	Levels
Brand	GM, BMW, Ferrari
Price	\$20k, \$40k, \$100k

Design: 9 choice sets, 3 alternatives each

Attribute counts:	Pair
brand: GM BMW Ferrari 10 11 6	bran
price:	GM BM Fe
20k 40k 100k	

Pairwise a	Pairwise attribute counts:							
brand & pr	brand & price:							
GM BMW Ferrari	20k 4 3 4 2	0	L00k 7 2 0					

A simple conjoint experiment about cars

Attribute	Levels
Brand	GM, BMW, Ferrari
Price	\$20k, \$40k, \$100k

Design: 90 choice sets, 3 alternatives each

Attribute counts:	Pairwise attribute counts:
brand: GM BMW Ferrari	brand & price:
92 80 98	20k 40k 100k GM 31 31 30
price:	BMW 25 25 30
20k 40k 100k 91 84 95	Ferrari 35 28 35

Bayesian D-efficient designs

Maximize information on "Main Effects" according to priors

Attribute	Levels	Prior	
Brand	GM, BMW, Ferrari	0, 1, 2	
Price	\$20k, \$40k, \$100k	0, -1, -4	

$$v_j = 1 \delta^{ ext{BMW}} + 2 \delta^{ ext{Ferrari}} - 1 \delta^{40 ext{k}} - 4 \delta^{100 ext{k}}$$

Bayesian D-efficient designs

Maximize information on "Main Effects" according to priors

Attribute	Levels	Prior
Brand	GM, BMW, Ferrari	0, 1, 2
Price	\$20k, \$40k, \$100k	0, -1, -4

Attribute counts:						
brand: GM 93	BMW 90	Ferrari 86				
price:						
20k 97	40k 10 93	00k 78				

			—
Pairwise a	attr	ibute	e counts:
brand & price:			
GM BMW Ferrari	52 30	41 30	

Negative of the hessian evaluated at a set of parameters is called the "Information Matrix"

$$oldsymbol{I}(oldsymbol{eta}) = -
abla_{oldsymbol{eta}}^2\ln(\mathcal{L})$$

"D-optimal" designs attempt to minimize the "D-error" of a design

$$D = \left| oldsymbol{I}(oldsymbol{eta})
ight|^{-1/p}$$

where p is the number of coefficients in the model

Finding Efficient Designs Open d-efficiency.Rmd

Your Turn

- 1. Individually, create a Bayesian D-efficient fractional factorial survey design. Inspect the attribute balance and overlap.
- 2. Compare your results with your teammates.

Break

Week 10: DOE & Power Analysis

- 1. Design of Experiment
- 2. Design Efficiency
- 3. Power Analysis

How many respondents do I need?

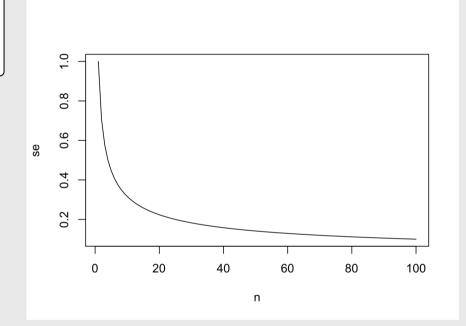
How many respondents do I need to get X level of precision on β ?

Standard errors are inversely related to \sqrt{N}

n <- seq(100)
se <- 1/sqrt(n)
plot(n, se, type = "l")</pre>

Standard errors also decrease with:

- Fewer attributes
- Fewer levels in each categorical attribute
- More questions per respondent



Using {cbcTools}, we can run simulations to determine the necessary sample size for a specific model

Open powerAnalysis.Rmd

Your Turn

Individually:

- 1. Using the survey design you created in the last practice, conduct a power analysis to determine the necessary sample size to achieve a 0.05 significance level on your parameter estimates.
- 2. Compare your results with your teammates.