

Week 7: Utility Models

iili EMSE 6035: Marketing Analytics for Design Decisions

2 John Paul Helveston
† October 12, 2022

Week 7: Utility Models

1. Utility models
2. Exploring choice data
3. Linear \& discrete parameters

BREAK
4. Outside good
5. Team project utility models

Week 7: Utility Models

1. Utility models
2. Exploring choice data
3. Linear \& discrete parameters

BREAK
4. Outside good
5. Team project utility models

Random utility model

The utility for alternative j is

$$
\tilde{u}_{j}=v_{j}+\tilde{\varepsilon}_{j}
$$

$v_{j}=$ Things we observe (non-random variables)
$\tilde{\varepsilon}_{j}=$ Things we don't observe (random variable)
$\tilde{u}_{j}=v_{j}+\tilde{\varepsilon}_{j}$

Practice Question 1

a) A random variable, \tilde{x}, has the PDF, $f_{\tilde{x}}(x)$. Write the equation to compute its total probability (hint: think area under the curve!). What is the answer to the equation?
b) A random variable, \tilde{x}, has a uniform distribution between the values 0 and 1 . Draw the probability density function (PDF) and Cumulative Density Function (CDF) of \tilde{x}.
c) The value of a random variable, \tilde{x}, is determined by rolling one fair, 6 -sided dice. Draw the PDF and CDF of \tilde{x}.

Logit model: Assume that $\tilde{\varepsilon}_{j} \sim$ Gumbel Distribution

$\tilde{u}_{j}=v_{j}+\tilde{\varepsilon}_{j}$
Probability of choosing alternative j :

Practice Question 2

a) A consumer is making a choice between two bars of chocolate:

- Milk chocolate (m)
- Dark chocolate (d)

Assume that we know the observed utility of each bar to be $v_{m}=3$ and $v_{d}=4$. Using a logit model, compute the probabilities of choosing each bar: P_{m} and P_{d}.
b) A third bar of chocolate is now added to the choice set. It is the exact same as the milk chocolate bar, but it has a slightly different wrapper (which has no effect on the consumer's utility). Now, $v_{m 1}=v_{m 2}=3$, and $v_{d}=4$. Based on the probabilities from question a), what would we expect the probabilities of choosing each bar to be? What probabilities does the logit model produce?
"Observed utility" $\left(v_{j}\right)$ is a weighted sum of attribute values

$$
v_{j}=\beta_{1} x_{j}^{\mathrm{A}}+\beta_{2} x_{j}^{\mathrm{B}}+\ldots
$$

Each x_{j} is an observable attribute (price, etc.)

> We know $x_{j}^{\mathrm{A}}, x_{j}^{\mathrm{B}}, \ldots$,
> we want to estimate $\beta_{1}, \beta_{2}, \ldots$

Notation Convention

Continuous: x_{j}

Discrete: δ_{j}

$$
u_{j}=\beta_{1} x_{j}^{\text {price }}+\ldots
$$

$u_{j}=\beta_{1} \delta_{j}^{\text {ford }}+\beta_{2} \delta_{j}^{\mathrm{gm}} \cdots$

```
#> price
#> 1 
```

```
#> brand brand_BMW brand_Ford brand_GM
#> 1 1 Ford 
```


Practice Question 3

Attribute Bar 1 Bar 2 Bar 3

Price	$\$ 1.20$	$\$ 1.50$	$\$ 3.00$
$\%$ Cacao	10%	60%	80%

a) Write out a model for the observed utility of each chocolate bar in the above set.
b) If the coefficient for the price attribute was -0.1 and the coefficient for \% Cacao attribute was 0.1, what is the difference in the observed utility between bars 3 and 1?
c) With the addition of the brand attribute, repeat part a.

Attribute Bar 1			Bar 2 Bar 3
Price	$\$ 1.20$	$\$ 1.50$	$\$ 3.00$
\% Cacao	10%	60%	80%
Brand	Hershey Lindt	Ghirardelli	

Your Turn

Let's say our utility function is:

$$
v_{j}=\beta_{1} x_{j}^{\text {price }}+\beta_{2} x_{j}^{\text {cacao }}+\beta_{3} \delta_{j}^{\text {hershey }}+\beta_{4} \delta_{j}^{\text {lindt }}
$$

And we estimate the following coefficients:

Parameter Coefficient	
β_{1}	-0.1
β_{2}	0.1
β_{3}	-2.0
β_{4}	-0.1

a) What are the expected probabilities of choosing each of these bars using a logit model?

Attribute Bar 1			Bar 2 Bar 3
Price	$\$ 1.20$	$\$ 1.50$	$\$ 3.00$
\% Cacao	10%	60%	80%
Brand	Hershey	Lindt	Ghirardelli

b) What price would Bar 2 have to be to get a 50\% market share?

Week 7: Utility Models

1. Utility models
2. Exploring choice data
3. Linear \& discrete parameters

BREAK
4. Outside good
5. Team project utility models

Download the logitr-cars repo from GitHub

[日 emse-madd-gwu / logitr-cars
Public

Exploring choice data

1. Open logitr-cars.Rproj
2. Open code/2.1-explore-data.R

Week 7: Utility Models

1. Utility models
2. Exploring choice data
3. Linear \& discrete parameters

BREAK
4. Outside good
5. Team project utility models

Dummy-coded variables

Dummy coding: 1 = "Yes", 0 = "No"

Data frame with one variable: price

```
data <- data.frame(price = c(10, 20, 30))
data
```

```
#> price
#> 1 10
#> 2 20
#> 3 30
```

Add dummy columns for each price "level"

```
library(fastDummies)
dummy_cols(data, "price")
```

\#>	price price_10	price_20	price_30	
\#>	10	1	0	0
\#> 2	20	0	1	0
\#> 3	30	0	0	1

Model price as continuous

Model price as discrete

$$
v_{j}=\beta_{1} x^{\text {price }}
$$

```
```

model <- logitr(

```
```

model <- logitr(
data = data,
data = data,
choice = "choice",
choice = "choice",
obsID = "obsID",
obsID = "obsID",
pars = "price"
pars = "price"
)

```
```

)

```
```

```
model <- logitr(
    data = data,
    choice = "choice",
    obsID = "obsID",
    pars = c("price_20", "price_30")
)
```

Reference level: price=10

Coef.
 Interpretation

$\beta 1$
utility for price $=20$ relative to price $=10$
$\beta 2$
utility for price $=30$ relative to price $=10$

Estimating utility models

1. Open logitr-cars.Rproj
2. Open code/3.1-model-mnl.R

mnl_dummy

mnl_linear

All dummy-code variables

```
pars = c(
    "price_20", "price_25",
    "fuelEconomy_25", "fuelEconomy_30",
    "accelTime_7", "accelTime_8",
    "powertrain_Electric")
```


Reference Levels:

- Price: 15
- Fuel Economy: 20
- Accel. Time: 6
- Powertrain: "Gasoline"

All continuous (linear), except for powertrain_Electric

```
pars = c(
    'price', 'fuelEconomy', 'accelTime',
    'powertrain_Electric')
```


Reference Levels:

- Powertrain: "Gasoline"

Your Turn

1) Run the code chunk to read in the data. csv file in the "data" folder, which contains choice observations from chocolate bars with the following attributes:

Attribute	Description
price	Price in \$
percent_cacao	$\%$ Cacao (how "dark" the chocolate is)
crispy_rice	0 or 1 for if the bar contains crispy rice
brand	"Hershey", "Lindt", or "Ghirardelli"

2) Write code to estimate the following utility model (HINT: you may need to make some dummy-coded variables!):

$$
u_{j}=\beta_{1} x_{j}^{\text {price }}+\beta_{2} x_{j}^{\% \text { cacao }}+\beta_{3} \delta_{j}^{\text {crispy }}+\beta_{4} \delta_{j}^{\text {hershey }}+\beta_{5} \delta_{j}^{\text {lindt }}+\varepsilon_{j}
$$

3) Write code to plot the change in utility for the price attribute.

Week 7: Utility Models

1. Utility models
2. Exploring choice data
3. Linear \& discrete parameters

BREAK
4. Outside good
5. Team project utility models

Estimating utility models with an Outside Good

1. Open logitr-cars.Rproj
2. Open code/4.1-model-nochoice.R

Week 7: Utility Models

1. Utility models
2. Exploring choice data
3. Linear \& discrete parameters

BREAK
4. Outside good
5. Team project utility models

Simulating choice data

Random choices
Choices according to assumed model

```
data <- cbc_choices(
    design = design,
    obsID = "obsID"
)
```



```
data <- cbc_choices(
    design = design,
    obsID = "obsID",
    priors = list(
        price = -0.7,
        fuelEconomy = 0.1,
        accelTime = -0.2,
        powertrain_Electric = -4.0
    )
)
```


Estimate a choice model

$$
v_{j}=\beta_{1} x_{j}^{\mathrm{price}}+\beta_{2} x_{j}^{\text {fuelEconomy }}+\beta_{3} x_{j}^{\text {accelTime }}+\beta_{4} \delta_{j}^{\text {electric }}
$$

```
model <- logitr(
    data = data,
    outcome = "choice",
    obsID = "obsID",
    pars = c(
        "price", "fuelEconomy", "accelTime", "powertrain_Electric"
    )
)
```


Your Turn

As a team:

1. Go back to your code from last week where you created your choice questions.
2. Write out a utility model for your project.
3. Write code to simulate data according to your utility model - pick some fake parameter values.
4. Write code to estimate a model using your simulated data.
