1. A random variable, \tilde{x}, has the probability density function $(\mathrm{PDF}), f_{\tilde{x}}(x)$, shown below.

- What is the approximate probability that $\tilde{x}=0$?
- At $x=0$, the PDF is at approximately 0.4 , so there is approximately a 40% probability that $\tilde{x}=0$.
- What is the approximate probability that $\tilde{x}<0$?
- The distribution is symmetric around $\tilde{x}=0$, so the probability that $\tilde{x}<0$ is approximately 0.5 , or a 50% probability.

2. The chart below shows a profit function, $\pi=f(p)$, where p is price.

- At approximately what price is profit maximized?
- The peak of the curve is at approximately $\$ 5.50$.
- What is the value of $\frac{d f}{d p}(p)$ at that price?
- Since the function is at its maximum value when the price is $\$ 5.50$, the slope at that point should be 0 . Therefore, the first derivative of $f(p), \frac{d f}{d p}(p)$, at the maximizing value of p is 0 .
- Is $\frac{d^{2} f}{d p^{2}}(p)$ positive or negative at that price?
- Since the curve is concave, the second derivative of $f(p), \frac{d^{2} f}{d p^{2}}(p)$, at the maximizing value of p is negative.

3. A student estimates the following linear regression using the motcars dataset in R :

$$
f=\beta_{0}+\beta_{1} w
$$

where f is the vehicle fuel economy (in miles per gallon), and w is the vehicle weight (in $1,000 \mathrm{lbs}$). The regression produces the following results:

	Estimate	Standard Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
β_{0}	37.285	1.8776	19.858	$8.24 \mathrm{E}-19$
β_{1}	-5.344	0.5591	-9.559	$1.29 \mathrm{E}-10$

- How would you interpret the meaning of the coefficients β_{0} and β_{1} ?
- The meaning of β_{0} is the fuel economy (in mpg) of a hypothetical vehicle with zero weight. The meaning of β_{1} is the decrease in fuel economy (in mpg) for every increase in $1,000 \mathrm{lbs}$ of a vehicle's weight.
- Use the results of this regression to predict the fuel economy of a car that weighs 4500 pounds.
- To compute the expected fuel economy of a car weighing 4500 lbs , we simply evaluate f using the estimated coefficient values (note that the weight is input at 4.5 since w is in 1000 lbs): $f=37.285-5.344(4.5)=13.237 \mathrm{mpg}$

