

Week 2: Data Wrangling

m EMSE 6035: Marketing Analytics for Design Decisions

Sohn Paul Helveston

September 06, 2023

Required Packages (check practice.R file)

Make sure you have these libraries installed:

install.packages(c("tidyverse", "here"))

Remember: you only need to install packages once!

Once installed, you'll need to *load* the libraries every time you open RStudio:

library(tidyverse)
library(here)

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*

BREAK

3. Project proposals

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*

BREAK

3. Project proposals

The data frame...in Excel

	Home I	nsert Pa	ge Layout	Formulas	Data	Revie	w Vie	W	
	rom From TML Text	New Database Query	Refresh All	Connection Properties	s A Z↓ Z↓	AZ	Filter	😪 Clear	nced C
11	7 🌲	$\times \checkmark j$	Se .						
1	A	В	с	D	E		F	G	н
1	firstName	lastName	instrument	yearOfBirth	deceased				
2	John	Lennon	guitar	1940	TRUE				
3	Paul	McCartney	bass	1942	FALSE				
4	Ringo	Starr	drums	1940	FALSE				
5	George	Harrison	guitar	1943	TRUE				
6	25.1		2020						
7									
8									
9									
10									
11									
12									
13	-					_			
14 15						_			

The data frame...in R

```
beatles <- tibble(
    firstName = c("John", "Paul", "Ringo", "George"),
    lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased = c(TRUE, FALSE, FALSE, TRUE)
)</pre>
```

beatles

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>		<lgl></lgl>
#>	1	John	Lennon	guitar	1940	TRUE
#>	2	Paul	McCartney	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

Columns: *Vectors* of values (must be same data type)

beatles

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
#>	1	John	Lennon	guitar	1940	TRUE
#>	2	Paul	McCartney	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

Extract a column using \$

beatles\$firstNa	me				
#> [1] "John"	"Paul"	"Ringo"	"George"		

Rows: Information about individual observations

Information about *John Lennon* is in the first row:

beatles[1,]
#> # A tibble: 1 × 5
#> firstName lastName instrument yearOfBirth deceased
#> <chr> <chr> <chr> <chr> <chr> <chr> 1 John Lennon guitar 1940 TRUE

Information about *Paul McCartney* is in the second row:

beatles[2,]
#> # A tibble: 1 × 5
#> firstName lastName instrument yearOfBirth deceased
#> <chr> <chr> <chr> <chr> <chr> <chr> 1 Paul McCartney bass 1942 FALSE

Take a look at the beatles data frame in practice.R

Getting data into R

- 1. Load external packages
- 2. Read in external files (usually a .csv file)

NOTE: csv = "comma-separated values"

Data from an R package

library(ggplot2)

See which data frames are available in a package:

data(package = "ggplot2")

Find out more about a package data set:

?msleep

Back to practice.R

Importing an external data file

Note the data.csv file in your data folder.

- **DO NOT** double-click it!
- **DO NOT** open it in Excel!

Excel can corrupt your data!

If you **must** open it in Excel:

- Make a copy
- Open the copy

Steps to importing external data files

1. Create a path to the data

library(here)
path_to_data <- here('data', 'data.csv')
path_to_data</pre>

#> [1] "/Users/jhelvy/gh/teaching/MADD/2023-Fall/class/2-data-wrangling/data/data.csv"

2. Import the data

library(tidyverse)
data <- read_csv(path_to_data)</pre>

Using the **here** package to make file paths

The here() function builds the path to your **root** to your *working directory* (this is where your **.** Rproj file lives!)

here()

#> [1] "/Users/jhelvy/gh/teaching/MADD/2023-Fall/class/2-data-wrangling"

The here() function builds the path to files *inside* your working directory

```
path_to_data <- here('data', 'data.csv')
path_to_data</pre>
```

#> [1] "/Users/jhelvy/gh/teaching/MADD/2023-Fall/class/2-data-wrangling/data/data.csv"

Avoid hard-coding file paths!

(they can break on different computers)

```
path_to_data <- 'data/data.csv'
path_to_data</pre>
```

#> [1] "data/data.csv"

Back to reading in data

path_to_data <- here('data', 'data.csv')
data <- read_csv(path_to_data)</pre>

Important: Use read_csv() instead of read.csv()

Your turn

1) Use the here() and read_csv() functions to load the data.csv file that is in the data folder. Name the data frame object data.

2) Use the data object to answer the following questions:

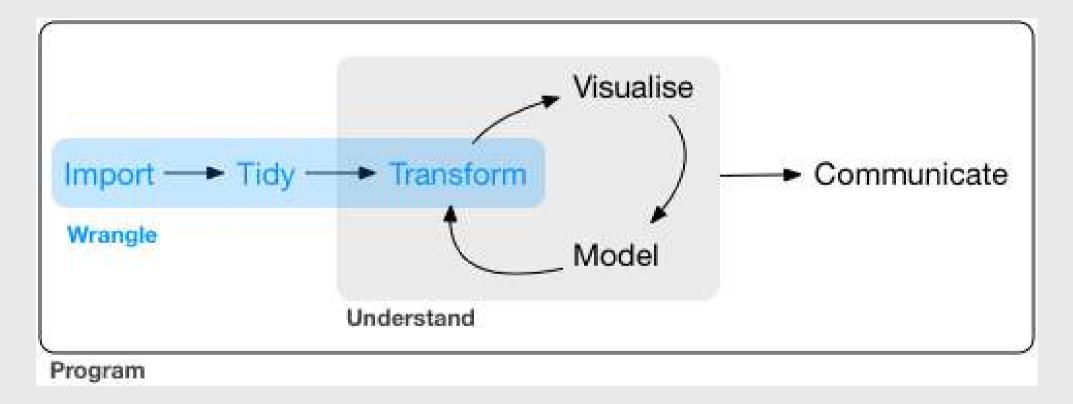
- How many rows and columns are in the data frame?
- What type of data is each column? (Just look, don't need to type out the answer)
- Preview the different columns what do you think this data is about? What might one row represent?
- How many unique airports are in the data frame?
- What is the earliest and latest observation in the data frame?
- What is the lowest and highest cost of any one repair in the data frame?

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*

BREAK


3. Project proposals

The tidyverse: stringr + dplyr + readr + ggplot2 + ...

Art by Allison Horst

80% of the job is data wrangling

Today: data wrangling with **dplyr**

Art by Allison Horst

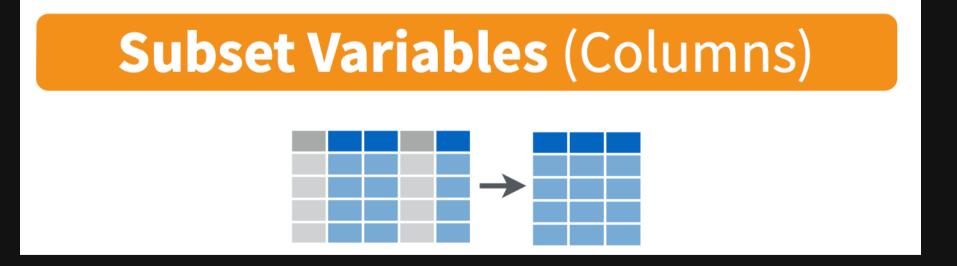
The main dplyr "verbs"

"Verb"	What it does
<pre>select()</pre>	Select columns by name
filter()	Keep rows that match criteria
<pre>arrange()</pre>	Sort rows based on column(s)
<pre>mutate()</pre>	Create new columns
<pre>summarize()</pre>	Create summary values

Core tidyverse concept: Chain functions together with "pipes"

Think of the words "...and then..."

data %>%
 do_something() %>%
 do_something_else()


Think of %>% as the words "...and then..."

Without Pipes (read from inside-out):

leave_house(get_dressed(get_out_of_bed(wake_up(me))))

With Pipes:

```
me %>%
    wake_up %>%
    get_out_of_bed %>%
    get_dressed %>%
    leave_house
```



```
beatles <- tibble(
    firstName = c("John", "Paul", "Ringo", "George"),
    lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased = c(TRUE, FALSE, FALSE, TRUE)
)</pre>
```

beatles

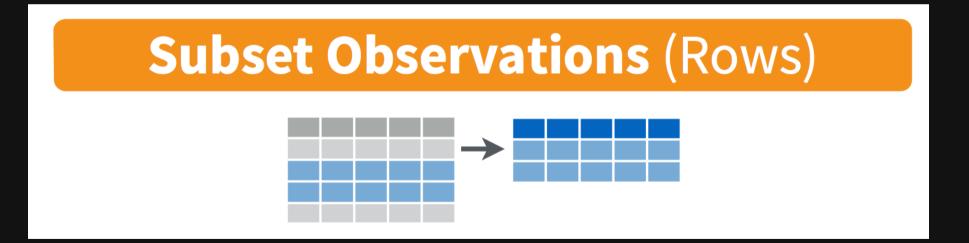
#>	> #	A tibble:	4 × 5			
#>	>	firstName	lastName	instrument	year0fBirth	deceased
#>	>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	.
#>	· 1	John	Lennon	guitar	1940	TRUE
#>	> 2	Paul	McCartney	bass	1942	FALSE
#>	• 3	Ringo	Starr	drums	1940	FALSE
#>	► 4	George	Harrison	guitar	1943	TRUE

Select the columns firstName & lastName

<pre>beatles %>% select(firstName, lastName)</pre>						
<pre>#> # A tibble: #> firstName #> <chr> #> 1 John #> 2 Paul #> 3 Ringo #> 4 George</chr></pre>						

Use the – sign to drop columns

beatles %>%
 select(-firstName, -lastName)

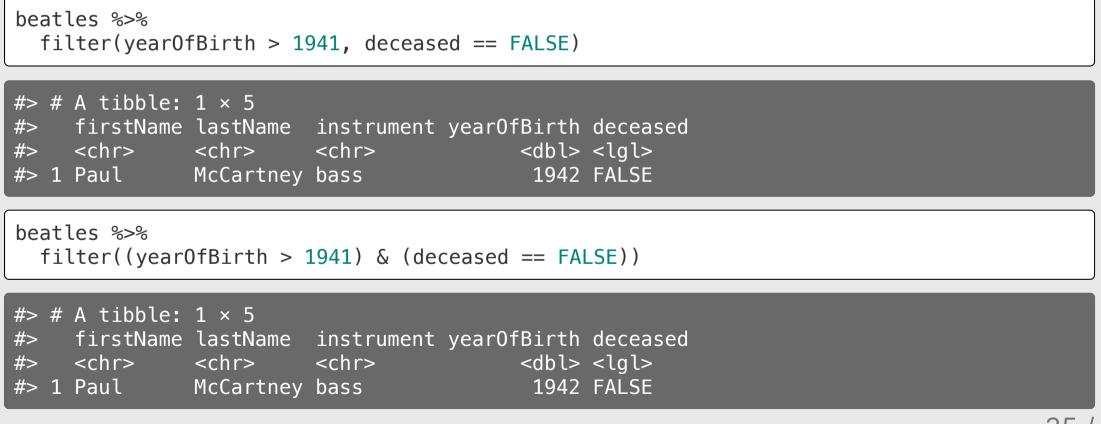

#>	#	A tibble:	4 × 3	
#>		instrument	year0fBirth	deceased
#>		<chr></chr>	<dbl></dbl>	<lgl></lgl>
#>	1	guitar	1940	TRUE
#>	2	bass	1942	FALSE
#>	3	drums	1940	FALSE
#>	4	guitar	1943	TRUE

Select columns based on name criteria:

- ends_with() = Select columns that end with a character string
- contains() = Select columns that contain a character string
- matches() = Select columns that match a regular expression
- one_of() = Select column names that are from a group of names

Select the columns that end with "Name":

<pre>beatles %>% select(ends_with(</pre>	"Name"))
<pre>#> # A tibble: 4 × #> firstName last #> <chr> <chr> <chr> #> 1 John Lenn #> 2 Paul McCa #> 3 Ringo Star #> 4 George Harr</chr></chr></chr></pre>	Name > on rtney r


Keep only the rows with band members born after 1941

#>	#	A tibble:	4 × 5			
#>		firstName	lastName	instrument	year0fBirth	deceased
#>		<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
		John		guitar	1940	TRUE
#>	2	Paul	<i>McCartney</i>	bass	1942	FALSE
#>	3	Ringo	Starr	drums	1940	FALSE
#>	4	George	Harrison	guitar	1943	TRUE

Keep only the rows with band members born after 1941

<pre>beatles %>% filter(yearOfBirth > 1941)</pre>								
<pre>#> # A tibble: 2 × 5 #> firstName lastName #> <chr> <chr> #> 1 Paul McCartney #> 2 George Harrison</chr></chr></pre>	<chr> bass</chr>	arOfBirth deceas <dbl> <lgl> 1942 FALSE 1943 TRUE</lgl></dbl>	ed					

Keep only the rows with band members born after 1941 & are still living

Logic operators for filter()

Description		Examp	ole	
Values greater than 1	value	> 1		
Values greater than or equal to 1	value	>= 1		
Values less than 1	value	< 1		
Values less than or equal to 1	value	<= 1		
Values equal to 1	value	== 1		
Values not equal to 1	value	!= 1		
Values in the set c(1, 4)	value	%in%	c(1,	4)

Removing missing values

Drop all rows where variable is NA

data %>%
 filter(!is.na(variable))

Combine filter() and select()

Get the first & last name of members born after 1941 & are still living

beatles %>%
 filter(yearOfBirth > 1941, deceased == FALSE) %>%
 select(firstName, lastName)

#> # A tibble: 1 × 2
#> firstName lastName
#> <chr> <chr> #> 1 Paul McCartney

Your turn

1) Use the here() and read_csv() functions to load the data.csv file that is in the data folder. Name the data frame object data.

2) Use the data object and the select() and filter() functions to answer the following questions:

- Create a new data frame, dc, that contains only the rows from DC airports.
- Create a new data frame, dc_dawn, that contains only the rows from DC airports that occurred at dawn.
- Create a new data frame, dc_dawn_birds, that contains only the rows from DC airports that occurred at dawn and only the columns about the *species* of bird.
- How many unique species of birds have been involved in accidents at DC airports?

Create new variables with mutate()

Art by Allison Horst

Create new variables with mutate()

Use the yearOfBirth variable to compute the age of each band member

<pre>beatles %>% mutate(age = 2022 -</pre>	yearOfBirth))			
<pre>#> # A tibble: 4 × 6 #> firstName lastName #> <chr> <chr> <chr> #> 1 John Lennon #> 2 Paul McCartney #> 3 Ringo Starr #> 4 George Harrison</chr></chr></chr></pre>	<chr> guitar bass drums</chr>	<dbl><dbl>194019421940</dbl></dbl>	deceased <lgl> TRUE FALSE FALSE TRUE</lgl>	age <dbl> 82 80 82 79</dbl>	

You can *immediately* use new variables

<pre>beatles %>% mutate(age = 2022 - yea meanAge = mean(a</pre>						
<pre>#> # A tibble: 4 × 7 #> firstName lastName #> <chr> <chr> #> 1 John Lennon #> 2 Paul McCartney #> 3 Ringo Starr #> 4 George Harrison</chr></chr></pre>	<chr> guitar</chr>	1940 1942 1940	deceased <lgl> TRUE FALSE FALSE TRUE</lgl>	age <dbl> 82 80 82 79</dbl>	meanAge <dbl> 80.8 80.8 80.8 80.8 80.8 80.8</dbl>	

Handling if/else conditions

ifelse(<condition>, <if TRUE>, <else>)

beatles %>%
 mutate(playsGuitar = ifelse(instrument == "guitar", TRUE, FALSE))

#> #	A tibble:	4 × 6					
#>	firstName	lastName	instrument	year0fBirth	deceased	playsGuitar	
#>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>	<lgl></lgl>	
#> 1	John	Lennon	guitar	1940	TRUE	TRUE	
#> 2	Paul	McCartney	bass	1942	FALSE	FALSE	
# > 3	Ringo	Starr	drums	1940	FALSE	FALSE	
#> 4	George	Harrison	guitar	1943	TRUE	TRUE	

Sort data frame with arrange()

Sort beatles data frame by year of birth

<pre>beatles %>% arrange(year0fBirth)</pre>			
<pre>#> # A tibble: 4 × 5 #> firstName lastName #> <chr> <chr> #> 1 John Lennon #> 2 Ringo Starr #> 3 Paul McCartney #> 4 George Harrison</chr></chr></pre>	<chr><chr><chr< th="">guitardrumsbassdrums</chr<></chr></chr>	Birth deceased <dbl> <lgl> 1940 TRUE 1940 FALSE 1942 FALSE 1943 TRUE</lgl></dbl>	

Sort data frame with arrange()

Use the desc() function to sort in descending order

<pre>beatles %>% arrange(desc(year0fl</pre>	Birth))			
<pre>#> # A tibble: 4 × 5 #> firstName lastName #> <chr> <chr> #> 1 George Harrison #> 2 Paul McCartney #> 3 John Lennon #> 4 Ringo Starr</chr></chr></pre>	<chr> guitar</chr>	<dbl><dbl>194319421940</dbl></dbl>		

Sort rows with arrange()

Compute the band member age, then sort based on the youngest:

beatles %>%
mutate(age = 2022 – yearOfBirth) %>%
arrange(age)

#> #	A tibble:	4 × 6				
#>	firstName	lastName	instrument	year0fBirth	deceased	age
#>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<lgl></lgl>	<dbl></dbl>
<i>#</i> > 1	George	Harrison	guitar	1943	TRUE	79
<i>#</i> > 2	Paul	McCartney	bass	1942	FALSE	80
# > 3	John	Lennon	guitar	1940	TRUE	82
#> 4	Ringo	Starr	drums	1940	FALSE	82

Your turn

1) Use the here() and read_csv() functions to load the data.csv file that is in the data folder. Name the data frame object data.

2) Using the data object, create the following new variables:

- height_miles: The height variable converted to miles (Hint: there are 5,280 feet in a mile).
- **cost_mil**: Is **TRUE** if the repair costs was greater or equal to \$1 million, FALSE otherwise.

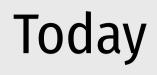
3) Remove rows that have NA for cost_repairs_infl_adj and re-arrange the resulting data frame based on the highest height and most expensive cost

Break

Week 2: Data Wrangling

1. Working with data frames

2. Data wrangling with the *tidyverse*


BREAK

3. Project proposals

Project Proposal Guidelines

Proposal Items

ltem	Description
Abstract	Product / technology in just a few sentences
Introduction	Description, picture, background
Market Opportunity	Identify your customer, competitors, and market size
Product Attributes & Research Questions	2-4 key variables related to product's design and performance
Questions	Major outstanding questions to be resolved

Market Opportunity

Product Attributes

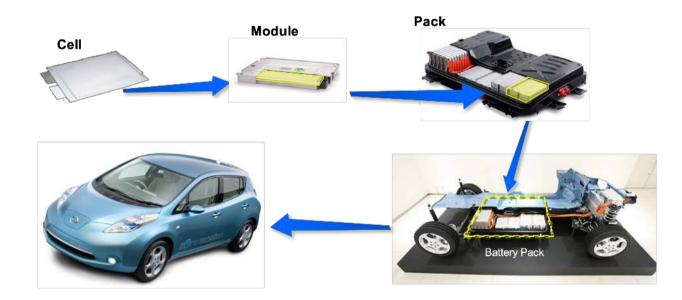
Research Questions

- Identify customer
- Identify competitors
- Identify market size

Features your *customer* cares about

Decisions are trying to inform

Example: Folding solar panels


Who is your customer?

- General public?
- Outdoor enthusiasts?
- Emergency gear?

Competitors?

- Similar folding panels
- Batteries?

Example: Electric vehicle battery

Who is your customer?

• Car buyers

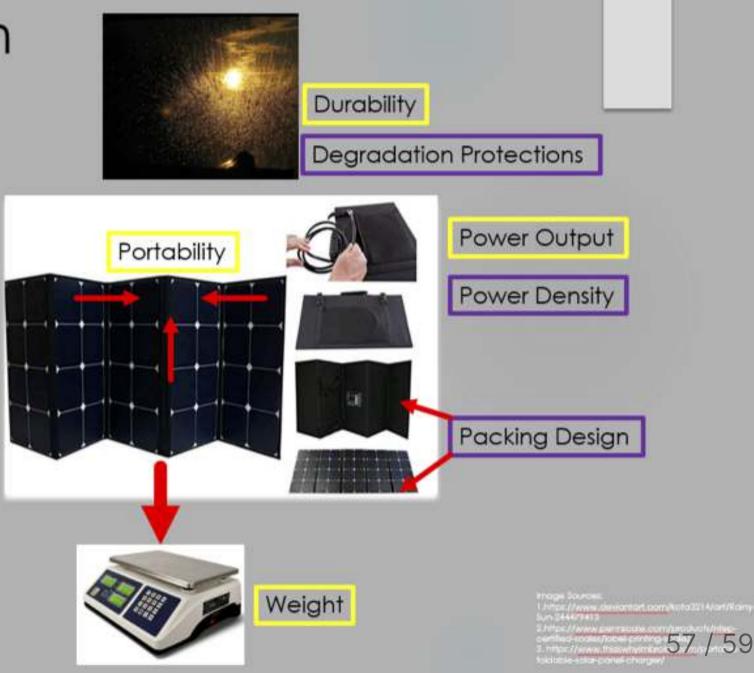
Competitors?

- Hybrid vehicles?
- Efficient gasoline vehicles?

Product Attributes

Features your *customer* cares about

Research Questions


Decisions you are trying to inform

Product Diagram Attribute Units Price- USD

Price-USD Weight-Kg Power Output - Watts Durability - Months Portability - <u>LxWxH</u>

Decision Variable Units

Power Density – W/Kg Degradation Rate – Hours Packing Design – Cm³

Product Attributes Table (example)

	Product:	Pocket Charg	e			
	Description:	Flexible, folda	ble, portable so	lar charger		
			Features		Comp	etitors
		Range Units		Demand	Aims Solar Panel	SUAOKI Solar Charger
tes	Price	\$60 - \$225	USD / kW	-	225	160
Product Attributes	Weight	1 - 3	kg	-	2.6	2.06
t Att	Power Output	100 - 500	W	+	120	60
quc	Durability	12 - 60	months	+	60	12
Pro	Portability	200 - 2800	cm^3	+	20.6"x11"x 1.2"	11.5"x7.1"x2.9"

Team Proposals

- 1. Re-arrange tables to sit with your team
- 2. Discuss & identify your customer & potential competitors
- 3. Discuss & identify key *Product Attributes* & *Research Questions*
- 4. Start building out your model relationships table (copy from this example)

Suggestions

- You may want to start with simple bullet lists
- Start with more items rather than fewer (can always cut back later)