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Background: Random Utility Model

Utility can be broken into two parts:

VI,
Things we can Things we can’t
observe / measure observe / measure
(“Observed Utility”) (“Error”)

We define v; as a function of observable product attributes, x;:

Uj — f(x]) =j1 + :BZXj2+'°'

/I Estimate model coefficients,
fB1, B>, ..., by maximizing the
likelihood function

Weights that denote the relative
value of attributes x;; and x;,



The likelihood function Is a function of the parameters

of a statistical model, given observed data

Probability
Pr(x =x|0)

Example:
X follows a normal distribution

with two parameters (0) :
* Mean (u = 0)
* Standard deviation (6 = 1)

Pr(x =00)
= fx(0)
= 0.4

0.3-
j)‘?(x) 0.2-
0.1-

0.0-

Likelihood
L(0]x)

Example:
We assume X follows a normal distribution

We have the following observations

O.2I-O.5 -1 {02 (01|16 |06 |05|-19

-0.4

What is the likelihood that the parameters are:
* Mean (u = 0)
» Standard deviation (6 = 1)

fzr(x) =

0.39|0.35(0.24|0.39|0.40|0.11|0.33|0.35|0.07

0.37

L(0]x) = fz(x1) fx(x2)...fx(xn) = 1.63e-6




Take the log of the likelihood to
convert multiplication to addition

0.39|0.35({0.24|0.39(0.40|0.11|{0.33|0.35|0.07 |0.37

L(0x) = fr(x1) fr(x2)..fx(xn) = 1.63e-6

log L(B]x) = fr(x1) + fr(x2)+...+fz(xn) =3



Maximum likelihood estimation is about finding the
parameters that produce the highest log-likelihood

Observations

02|05 -1102|01|16|06|05|-19|-04

u | o Probability of X = x log L(0|x)
-1 1 [0.19(/0.35({0.40(0.19|0.22|0.01|{0.11|0.13(0.27(0.33 2.2

0 1 10.39(0.35(0.24(0.39|0.40(0.11|0.33|0.35|0.07|0.37 3

1 2 10.1810.15{0.12|0.18(0.18(0.19|0.20|0.19|0.07 | 0.16 1.62




Practice Question 1

Observations: Height of students (inches)
65 | 69 | 66 | 67 | 68 | 72 |68 | 69 | 63 | 70

Let’s say we know that the height of students, X, in a classroom follows a normal distribution.
A professor obtains the above height measurements students in her classroom. What is the
log-likelihood that X ~ N (68, 4)? In other words, compute logL(u = 68,0 = 4|x).

Hints:

1. The log-likelihood is computed by: L(0|x) = fz(x1)+[fz(x2)+...+fz(x;,)

2. The dnorm(x, mean, sd) function in R returns the value of fz(x) for a
normal distribution with a given mean (mean) and standard deviation (sd).

Compute the log-likelihood function using the same standard deviation (¢ = 4) but with the
following different values for the mean, u: 66, 67, 68, 69, 70. How do the results compare?
Which value for u produces the highest log-likelihood?



Use the data we observe, X, to estimate
the parameters, 0, of an assumed model

maximizeL(Glx) = fjg(xl)+ff(xZ)+...+ff(xn) — Eff(xlle)
=1

with respect to 0

|

Solving this is known as
“Maximum Likelihood Estimation”

This is an optimization problem!



Optimization:
Find the value, x, that maximizes the function f (x)

m(p) = —C
Example: Find what price, p, () B ql(l(; ~ )( 9
will maximize profit, m, Drofit if ¢ = 1 : ( g p)(p—c
for the following model: = —p*+ (10+c)p — 10c
Profit: m(p) = q(p — ¢) o1
Demand:q =10 —p a—=—2p+1()_|_C=()
Cost: ¢ D p
maximize m(p) - Solve for p:
with respect to p ., 10+c
subjecttop = 0 P = 2
11

Ifc=1,p*=7=5.5



Optimality Conditions



Optimality conditions

Global maximum  Local maximum
First order necessary condition

x™ is a “stationary point” when

df (x7) _
dx 0

Second order sufficiency condition
x* is a local maximum when

d?f(x*
fG)
dx
x™ is a local minimum when Local minimum
d?f(x*
F& !

dx?



Optimality conditions

First order necessary condition
x™ is a “stationary point” when

df () _
dx
Second order sufficiency condition
x™ is an inflection point when f(x)
d2f(x)
dx2

Inflection point
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Optimality conditions for local maximum

I\!umbe-r o First order condition Second order condition
dimensions
d * 2 *
One fx7) =0 L(x) <0
dx dx?
“Gradient” “Hessian”
VF(xy, xp, . Xp) V2f(xq, Xy, . Xp)
I A b i
dx2 0x,0x1
Multiple af oadf af = :
Loxy " 0xy” " 0xy, o°f ... 9
= [O’O, e 0] _axlaxn ax% .

Must be “negative definite”
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Optimality conditions for local minimum

Number of

) : First order condition Second order condition Example
dimensions
df (x* 2f(x*
e f(X)=0 df(X)>O
dx dx?
“Gradient” “Hessian”
VF(xy, xp, . Xp) V2f(xq, Xy, . Xp)
[ &F . _8F ]
dx2 0x, 0%
Multiple of Odf of = : :
Loxy " 0xy” " 0xy, o°f ... 9
= [O’O, ’0] _axlaxn ax% .

Must be “positive definite”




ptimization

Convention:

"Negative Null Form”

maximize f(x)

minimize —f(x)

with respect to x

subject to...

> with respect to x

subject to...




Optimization Approaches:

1. Analytic
2. Algorithmic



Analytical Optimization

First order necessary condition
x" is a “stationary point” when

Ex: Find what value for x will maximize

the function f(x) = —x* + 6x df (x*) 0
dx
minimize f(x) = x% — 6x
with respect to x ﬂ=2x—6=0 s x* =23
dx
150 Second order sufficiency condition
x™ is a local maximum / minimum when
100
d?f(x* d?f(x*
f(x7) — f(x7) -
. dx? dx?

d*f . .
0 —— =2 — x'isalocal minimum
dx?
-10 0 10




ptimization Algorithms

Gradient Descent Method:

1. Choose a starting point, x,

2. At that point, compute the
gradient, Vf (xp)

3. Compute the next point, with
a step sizey:

Xn+1 = Xn —YVf(xy)

Very small

*Stop when Vf (x,) < 5‘/ Al
or
*Stop when (X471 —x,) < O




sonvex &

Convex

Concave Functions

Concave

When minimizing a convex function, When maximizing a concave function,
any local minimum is a global minimum any local maximum is a global maximum




Practice Question 2

Consider the following function:
f(x) =x%—6x

The gradient is:
Vf(x) =2x—6

Using the starting point x =1 and the step size
y = 0.3, apply the gradient descent method to
compute the next three points in the search

algorithm.

Hints:

1. Remember the gradient descent method:
Xn+1 = Xn — va(x n)



Practice Question 3

Consider the following function: Using the starting point Xy =[1, 1] and the step
f(&) = x% + 4x% size y = 0.15, apply the gradient descent
method to compute the next three points in

The gradient is: the search algorithm.

Vf(x) = [éiﬂ

Hints:

1. Remember the gradient descent method:
Xn+1 = Xn — YV (xp)
2. In R, use the c() function to create a
vector.



Estimating Utility Model Coefficients Using
Maximum Likelihood Estimation

J
uj = v + & minimize —logL = —sz(le)yf
~ J=1
= p1Xj1 T prXip + ... T&; .
Bixj1 + B2%; J with respect to
, ~
B j T & yj = 1if alternative j was chosen
y;j = 0 if alternative j was not chosen
Estimate B = (B4, B2, ..., Bnl For logit model:

by maximizing the likelihood function ;
eVj e b Xj
Pj — ] . — ] B’X




