10:00
ME(a)=
(A+AB+AC+ABC4)−
(I+B+C+BC4)
(A: Electric? Yes+ or No-)
INT(ab)=
12[(AB+ABC2)−(B+BC2)]−
12[(A+AC2)−(I+C2)]
meat | wine |
---|---|
fish | white |
fish | red |
steak | white |
steak | red |
meat | wine |
---|---|
fish | white |
fish | red |
steak | white |
steak | red |
meat
: Fish or Steak?wine
: Red or White?meat | wine |
---|---|
fish | white |
fish | red |
steak | white |
steak | red |
meat
: Fish or Steak?wine
: Red or White?meat*wine
: Red or White wine with Steak?meat*wine
: Red or White wine with Fish?interactions.qmd
library(cbcTools)profiles <- cbc_profiles( electric = c(1, 0), warranty = c(1, 0), ford = c(1, 0))profiles
#> profileID electric warranty ford#> 1 1 1 1 1#> 2 2 0 1 1#> 3 3 1 0 1#> 4 4 0 0 1#> 5 5 1 1 0#> 6 6 0 1 0#> 7 7 1 0 0#> 8 8 0 0 0
All levels appear an equal number of times.
All pairs of levels appear together an equal number of times.
library(cbcTools)profiles <- cbc_profiles( electric = c(1, 0), warranty = c(1, 0), ford = c(1, 0))profiles
#> profileID electric warranty ford#> 1 1 1 1 1#> 2 2 0 1 1#> 3 3 1 0 1#> 4 4 0 0 1#> 5 5 1 1 0#> 6 6 0 1 0#> 7 7 1 0 0#> 8 8 0 0 0
All levels appear an equal number of times.
All pairs of levels appear together an equal number of times.
profiles[c(1, 3, 5, 6),]
#> profileID electric warranty ford#> 1 1 1 1 1#> 3 3 1 0 1#> 5 5 1 1 0#> 6 6 0 1 0
balance-orthogonality.qmd
Consider the following experiment design
a | b | c | Effect |
---|---|---|---|
+ | - | - | A |
- | + | - | B |
+ | - | + | AC |
- | + | + | BC |
a) Is the design balanced? Is is orthogonal?
b) Write out the equation to compute the main effect for a, b, and c.
c) Are any main effects confounded? If so, what are they confounded with?
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 9 choice sets, 3 alternatives each
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 9 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 10 11 6price: 20k 40k 100k 9 9 9
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 9 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 10 11 6price: 20k 40k 100k 9 9 9
Pairwise attribute counts:brand & price: 20k 40k 100k GM 3 0 7 BMW 4 5 2 Ferrari 2 4 0
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 90 choice sets, 3 alternatives each
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 90 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 92 80 98price: 20k 40k 100k 91 84 95
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 90 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 92 80 98price: 20k 40k 100k 91 84 95
Pairwise attribute counts:brand & price: 20k 40k 100k GM 31 31 30 BMW 25 25 30 Ferrari 35 28 35
Attribute | Levels | Prior |
---|---|---|
Brand | GM, BMW, Ferrari | 0, 1, 2 |
Price | $20k, $40k, $100k | 0, -1, -4 |
vj=1δBMW+2δFerrari−1δ40k−4δ100k
Attribute | Levels | Prior |
---|---|---|
Brand | GM, BMW, Ferrari | 0, 1, 2 |
Price | $20k, $40k, $100k | 0, -1, -4 |
Attribute counts:brand: GM BMW Ferrari 93 90 86price: 20k 40k 100k 97 93 78
Attribute | Levels | Prior |
---|---|---|
Brand | GM, BMW, Ferrari | 0, 1, 2 |
Price | $20k, $40k, $100k | 0, -1, -4 |
Attribute counts:brand: GM BMW Ferrari 93 90 86price: 20k 40k 100k 97 93 78
Pairwise attribute counts:brand & price: 20k 40k 100k GM 52 41 0 BMW 30 30 30 Ferrari 15 22 49
where p is the number of coefficients in the model
design-efficiency.qmd
20:00
Individually, create a Bayesian D-efficient fractional factorial survey design. Inspect the attribute balance and overlap.
Compare your results with your teammates.
n <- seq(100)se <- 1/sqrt(n)plot(n, se, type = "l")
Standard errors also decrease with:
powerAnalysis.qmd
20:00
Individually:
Using the survey design you created in the last practice, conduct a power analysis to determine the necessary sample size to achieve a 0.05 significance level on your parameter estimates.
Compare your results with your teammates.
10:00
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
o | Tile View: Overview of Slides |
Esc | Back to slideshow |
10:00
ME(a) =
\left( \frac{A + AB + AC + ABC}{4}\right) -
\left( \frac{I + B + C + BC}{4}\right)
(A: Electric? Yes+ or No-)
INT(ab) =
\frac{1}{2}\left[ \left( \frac{AB + ABC}{2}\right) - \left( \frac{B + BC}{2}\right) \right] -
\frac{1}{2}\left[ \left( \frac{A + AC}{2}\right) - \left( \frac{I + C}{2}\right) \right]
meat | wine |
---|---|
fish | white |
fish | red |
steak | white |
steak | red |
meat | wine |
---|---|
fish | white |
fish | red |
steak | white |
steak | red |
meat
: Fish or Steak?wine
: Red or White?meat | wine |
---|---|
fish | white |
fish | red |
steak | white |
steak | red |
meat
: Fish or Steak?wine
: Red or White?meat*wine
: Red or White wine with Steak?meat*wine
: Red or White wine with Fish?interactions.qmd
library(cbcTools)profiles <- cbc_profiles( electric = c(1, 0), warranty = c(1, 0), ford = c(1, 0))profiles
#> profileID electric warranty ford#> 1 1 1 1 1#> 2 2 0 1 1#> 3 3 1 0 1#> 4 4 0 0 1#> 5 5 1 1 0#> 6 6 0 1 0#> 7 7 1 0 0#> 8 8 0 0 0
All levels appear an equal number of times.
All pairs of levels appear together an equal number of times.
library(cbcTools)profiles <- cbc_profiles( electric = c(1, 0), warranty = c(1, 0), ford = c(1, 0))profiles
#> profileID electric warranty ford#> 1 1 1 1 1#> 2 2 0 1 1#> 3 3 1 0 1#> 4 4 0 0 1#> 5 5 1 1 0#> 6 6 0 1 0#> 7 7 1 0 0#> 8 8 0 0 0
All levels appear an equal number of times.
All pairs of levels appear together an equal number of times.
profiles[c(1, 3, 5, 6),]
#> profileID electric warranty ford#> 1 1 1 1 1#> 3 3 1 0 1#> 5 5 1 1 0#> 6 6 0 1 0
balance-orthogonality.qmd
Consider the following experiment design
a | b | c | Effect |
---|---|---|---|
+ | - | - | A |
- | + | - | B |
+ | - | + | AC |
- | + | + | BC |
a) Is the design balanced? Is is orthogonal?
b) Write out the equation to compute the main effect for a, b, and c.
c) Are any main effects confounded? If so, what are they confounded with?
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 9 choice sets, 3 alternatives each
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 9 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 10 11 6price: 20k 40k 100k 9 9 9
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 9 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 10 11 6price: 20k 40k 100k 9 9 9
Pairwise attribute counts:brand & price: 20k 40k 100k GM 3 0 7 BMW 4 5 2 Ferrari 2 4 0
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 90 choice sets, 3 alternatives each
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 90 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 92 80 98price: 20k 40k 100k 91 84 95
Attribute | Levels |
---|---|
Brand | GM, BMW, Ferrari |
Price | $20k, $40k, $100k |
Design: 90 choice sets, 3 alternatives each
Attribute counts:brand: GM BMW Ferrari 92 80 98price: 20k 40k 100k 91 84 95
Pairwise attribute counts:brand & price: 20k 40k 100k GM 31 31 30 BMW 25 25 30 Ferrari 35 28 35
Attribute | Levels | Prior |
---|---|---|
Brand | GM, BMW, Ferrari | 0, 1, 2 |
Price | $20k, $40k, $100k | 0, -1, -4 |
v_j = 1 \delta^{\mathrm{BMW}} + 2 \delta^{\mathrm{Ferrari}} -1 \delta^{\mathrm{40k}} -4 \delta^{\mathrm{100k}}
Attribute | Levels | Prior |
---|---|---|
Brand | GM, BMW, Ferrari | 0, 1, 2 |
Price | $20k, $40k, $100k | 0, -1, -4 |
Attribute counts:brand: GM BMW Ferrari 93 90 86price: 20k 40k 100k 97 93 78
Attribute | Levels | Prior |
---|---|---|
Brand | GM, BMW, Ferrari | 0, 1, 2 |
Price | $20k, $40k, $100k | 0, -1, -4 |
Attribute counts:brand: GM BMW Ferrari 93 90 86price: 20k 40k 100k 97 93 78
Pairwise attribute counts:brand & price: 20k 40k 100k GM 52 41 0 BMW 30 30 30 Ferrari 15 22 49
where p is the number of coefficients in the model
design-efficiency.qmd
20:00
Individually, create a Bayesian D-efficient fractional factorial survey design. Inspect the attribute balance and overlap.
Compare your results with your teammates.
n <- seq(100)se <- 1/sqrt(n)plot(n, se, type = "l")
Standard errors also decrease with:
powerAnalysis.qmd
20:00
Individually:
Using the survey design you created in the last practice, conduct a power analysis to determine the necessary sample size to achieve a 0.05 significance level on your parameter estimates.
Compare your results with your teammates.